FINAL 2020 ANNUAL GROUNDWATER MONITORING REPORT SITE 3 – BALL ROAD LANDFILL AND BURN PITS NAVAL SUPPORT ACTIVITY MECHANICSBURG MECHANICSBURG, PENNSYLVANIA

Contract No. N40085-16-D-2292 CTO: 0002

January 2021

Prepared for:

NAVFAC Mid-Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:

AMS-Rhea JV 41650 Courthouse Drive, Suite 100 PO Box 2102 Leonardtown, Maryland 20650

TABLE OF CONTENTS

SECTION	N PAGE
1.0	INTRODUCTION1-1
2.0	BACKGROUND2-1
2.1	General Activity Information
2.2	Site 3 Environmental History2-1
3.0	PROJECT ACTIVITIES
3.1	Field Work Performed
3.2	Laboratory Analysis
3.3	Data Tracking and Validation
4.0	GROUNDWATER POTENTIOMETRIC SURFACE4-1
5.0	JUNE 2020 ANALYTICAL RESULTS5-1
6.0	DISCUSSION OF ANALYTICAL RESULTS AT SITE 36-1
6.1	Extent of Contamination6-1
6.2	Contaminant Trend Evaluation 6-2
6.3	Statistical Evaluation of Contaminant Trend Data6-6
7.0	SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS7-1
7.1	Summary7-1
7.2	Conclusions
7.3	Recommendations 7-2
8.0	REFERENCES8-1
	TABLES
Table 2-1	Contaminants of Concern
Table 3-1	Well Construction and Water Level Data, Site 3, Site 8, and Site 9 – 2020
Table 3-2	Sampling Location Summary – June 2020
Table 4-1	Vertical Head Differential Analysis – June 2020
Table 5-1	June 2020 Groundwater Sampling Event Frequency of Detection and Statistical Summary
Table 5-2	Summary of Groundwater Sample Analytical Detections – 2020
Table 5-3	Comparison of 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, and 2020 COC Exceedances
Table 5-4	Water Quality and Natural Attenuation Parameters – June 2020
Table 5-4	Summary of Mann-Kendall Trend Analysis – Total VOCs
Table 6-2	Summary of Mann-Kendall Trend Analysis – Trichloroethene
Table 6-3	Summary of Mann-Kendall Trend Analysis – 1,2-Dichloroethene (cis- or Total)
Table 6-4	
Table 6-5	Summary of Mann-Kendall Trend Analysis – Chlorobenzene
Table 6-6	, and the second
Table 6-7	·
Table 6-8	Summary of Mann-Kendall Trend Analysis – Intermediate and Deep Wells

GRAPHS

	
Graph 6-1 Graph 6-2 Graph 6-3 Graph 6-4 Graph 6-5 Graph 6-6 Graph 6-7 Graph 6-8 Graph 6-9 Graph 6-10 Graph 6-11	Contaminant Trends – Source Area Well S03M50 Contaminant Trends – Source Area Well S03M54 Contaminant Trends – Source Area Well S03M17 Contaminant Trends – Source Area Well S03M18 Contaminant Trends – Downgradient Well S03M44 Contaminant Trends – Downgradient Well S03M46 Contaminant Trends – Arsenic by Well Site 3 Groundwater Trends – Trichloroethene Site 3 Groundwater Trends – 1,2-Dichloroethene (cis- or Total) Site 3 Groundwater Trends – Vinyl Chloride Site 3 Groundwater Trends – Chlorobenzene
Graph 6-12	Site 3 Groundwater Trends – Arsenic
Graph 6-13	Site 3 Groundwater Trends – Manganese
	FIGURES
Figure 2-1 Figure 4-1 Figure 4-2 Figure 6-1a Figure 6-1b Figure 6-2a Figure 6-2b Figure 6-2c Figure 6-3a Figure 6-3b Figure 6-3c Figure 6-4 Figure 6-5 Figure 6-7 Figure 6-7 Figure 6-8 Figure 6-9 Figure 6-10 Figure 6-11 Figure 6-12 Figure 6-13	Site Location Map and Well Location Plan Potentiometric Surface Map – Shallow Wells, June 2020 Potentiometric Surface Map – Intermediate/Deep Wells, June 2020 Trichloroethene Isoconcentrations – Shallow Wells, June 2020 Trichloroethene Isoconcentrations – Intermediate Wells, June 2020 Trichloroethene Isoconcentrations – Deep Wells, June 2020 cis-1,2-Dichloroethene Isoconcentrations – Shallow Wells, June 2020 cis-1,2-Dichloroethene Isoconcentrations – Intermediate Wells, June 2020 cis-1,2-Dichloroethene Isoconcentrations – Deep Wells, June 2020 Vinyl Chloride Isoconcentrations – Shallow Wells, June 2020 Vinyl Chloride Isoconcentrations – Intermediate Wells, June 2020 Vinyl Chloride Isoconcentrations – Deep Wells, June 2020 Chlorobenzene Isoconcentrations – June 2020 Arsenic Isoconcentrations – June 2020 Trichloroethene Isoconcentrations – June 2020 Trichloroethene Isoconcentrations Over Time (μg/L) cis-1,2-Dichloroethene Isoconcentrations Over Time (μg/L) Vinyl Chloride Isoconcentrations Over Time (μg/L) Chlorobenzene Isoconcentrations Over Time (μg/L) Manganese Isoconcentrations Over Time (μg/L) Manganese Isoconcentrations Over Time (μg/L)
	APPENDICES
Appendix A -	- Field Forms

Appendix A-1 Water Level Sheets Appendix A-2 Field Log Sheets Chains of Custody Appendix A-3

Appendix B – Historic Data

Appendix B-1 Well Construction Data and Historic Water Level Surveys

Appendix B-2 Historic Groundwater Analytical Data

Appendix C – Data Validation Reports

LIST OF ABBREVIATIONS AND ACRONYMS

1,2,4-TMB 1,2,4-Trimethylbenzene AMR Annual Monitoring Report

AMS-Rhea JV AOC Area of Concern

BVC BAV1 Vinyl Chloride Reductase

bgs Below Ground Surface
cells/mL Cells Per Milliliter
cis-1,2-DCE Cis-1,2-Dichloroethene
COCs Contaminants of Concern

CVOCs Chlorinated Volatile Organic Compounds

DO Dissolved Oxygen DHC Dehalococcoides

DRMO Defense Reutilization Marketing Offices

EPA United States Environmental Protection Agency

ft Feet

IR Installation Restoration

ISBGT In-situ Biogeochemical Transformation

J Estimated Value LUC Land Use Control

MCLs Maximum Contaminant Levels

mg/L Milligrams per Liter

MSC Medium Specific Concentration mS/cm milliSiemens per Centimeter

MS/MSD Matrix Spike/Matrix Spike Duplicate

mV Millivolts

NAVFAC Naval Facilities Engineering Command

Navy Department of the Navy NSA Naval Support Activity

NTU Nephelometric Turbidity Units
ORP Oxidation Reduction Potential

PADEP Pennsylvania Department of Environmental Protection

PCBs Polychlorinated Biphenyls PRGs Preliminary Remedial Goals

QA Quality Assurance
QC Quality Control
RA Removal Action
ROD Record of Decision

SAP Sampling and Analysis Plan Site 3 Ball Road Landfill and Burn Pits

TCE Trichloroethene TOR Top of Riser

TtNUS Tetra Tech NUS, Inc.

UFP-QAPP Uniform Policy-Quality Assurance Project Plan

VCR Vinyl Chloride Reductase
VOC Volatile Organic Compound
WQPs Water Quality Parameters
μg/L Micrograms Per Liter

1.0 INTRODUCTION

This report provides a summary of the results of the 2020 annual groundwater sampling at Naval Support Activity (NSA) Mechanicsburg, Pennsylvania. The 2020 sampling event was completed at Site 3 due to site-specific groundwater contamination that requires monitoring and evaluation. Annual sampling has included approximately 50 wells, with most wells located at Site 3; however, nearby wells in adjacent Sites 8 and 9 are included for completeness of the plume evaluation. A brief overview of the site, a summary of the work performed, and a presentation and discussion of the water level data and analytical data for the sampling event are included in this report.

Groundwater flow patterns have been evaluated and current analytical results were compared to prior analytical data to identify changes in groundwater flow patterns and groundwater quality trends since the in-situ chemical oxidation activities performed in 2004. Tabular summaries and graphical analytical trend analyses are provided for selected Contaminants of Concern (COCs) and wells across the site. Finally, conclusions and recommendations are provided. Field forms are provided in Appendix A, historical data tables are provided in Appendix B, and data validation reports are provided in Appendix C.

Based on the results of the 2020 annual groundwater sampling event, as presented herein, it is recommended to suspend the 2021 annual groundwater monitoring event in order to conduct an optimization evaluation on the Site 3 monitoring program and network in 2021. The evaluation will focus on optimizing the monitoring program in order to maximize cost-effectiveness without compromising program and data quality. Refer to Section 7.3 for additional information regarding the recommended optimization evaluation.

The sampling for 2020 and this report were completed by AMS-Rhea JV, a joint venture between Assisted Management Solutions, Inc. and Rhea Engineers & Consultants, Inc. (AMS-Rhea) under contract to Naval Facilities Engineering Command (NAVFAC).

2.0 BACKGROUND

2.1 General Activity Information

NSA Mechanicsburg is a shore activity with a mission to coordinate and provide common base support services to tenant activities and other naval units located on the base in Mechanicsburg, Pennsylvania. Naval Supply Systems Command Headquarters is a major tenant of the base. Buildings occupy approximately 25 percent, roads more than 13 percent, and railroads more than 11 percent of the installation area. NSA Mechanicsburg contains more than 9 million square feet of building space. Of the 155 buildings within the facility, approximately 83 percent are used for supply and storage, slightly more than 7 percent are used for administrative offices, and 4 percent are used for maintenance and production.

During the course of the NSA Mechanicsburg Navy's Installation Restoration (IR) Program, 66 environmental sites have been addressed. Fifteen are classified as distinct IR sites, with an additional 51 as Areas of Concern (AOCs). Ongoing Land Use Control (LUC) inspections are part of the remedies at Sites 1, 3, 8, and 9. At Site 3, long-term groundwater monitoring is ongoing in accordance with the 2004 Record of Decision (ROD).

2.2 Site 3 Environmental History

Site 3 covers approximately 7.5 acres across the southwestern portion of NSA Mechanicsburg (Figure 2-1). Originally, the site served as a quarry for borrow materials that were used for on-site construction. Two large borrow pits were developed and later used as disposal areas (burn pits) for liquid wastes (solvents, lubricants, paints, varnishes, gasoline, and medical supplies) from the mid-1940s to 1977 (Figure 2-1). As a result of the waste disposal (burning) activities at the site, soil and groundwater were impacted, with the most significant contaminants, in terms of volume and risk, being various chlorinated volatile organic compounds (CVOCs). Soils at Site 3 were addressed through a Removal Action (RA) consisting of excavation and offsite disposal of soil from the two burn pits. The soil removal and disposal activities were performed over multiple phases in the mid- to late-1990s. A post-removal action soils ROD requiring institutional controls (deed notice and land use restrictions) was signed in 2000. Currently, most of the site is covered by asphalt that was installed in 1994 as part of an interim remedial action for soils and re-installed in 1999 over the burn pit area after their excavation.

Several groundwater investigations were performed for the fractured limestone aquifer that underlies Site 3 from 1990 through 2003, concurrent with the soil remediation events. Groundwater impacts associated with both burns pits were identified and characterized through detections of organic and inorganic contaminants. The contaminants have been found as both dissolved-phase constituents and as components in non-aqueous phase liquids.

In 2004, a ROD was signed for Site 3 groundwater. The COCs identified in the ROD included 1,4-dichlorobenzene, 1,2,4-trimethylbenzene (1,2,4-TMB), 1,2-dichloroethane, 2-methyl-2-propenenitrile, benzene, carbon tetrachloride, chlorobenzene, cis-1,2-dichloroethene (DCE), trichloroethene (TCE), vinyl chloride (VC), polychlorinated biphenyls (PCB) Aroclor-1260, arsenic, manganese, thallium, benzo(b)fluoranthene, alpha-BHC, DDE, and DDT. The selected alternative for restoration of groundwater was the injection of a chemical oxidant into the aquifer beneath the site to breakdown organic contaminants with subsequent groundwater monitoring and sampling to determine if cleanup goals were achieved. The Navy implemented two phases of chemical oxidant (hydrogen peroxide/chelated iron catalyst) injection activities at Site 3 over the course of four injection events in 2004. Post injection groundwater monitoring was performed from 2004 to 2016 with annual sampling events ongoing. Monitoring has indicated a slow but gradual decrease in the concentration of COCs, although cleanup levels for several COCs have not been achieved.

_

¹ The COCs 1,2,4-TMB, 1,2-dichloroethane, 2-methyl-2-propenenitrile, thallium, benzo(b)fluoranthene, alpha-BHC, DDE, and DDT were removed from the sampling program after analytical results indicated achievement of ROD cleanup levels.

During 2015 to early 2017, the Navy completed an extensive baseline data collection effort to prepare for the injection of specific amendments for In-situ Biogeochemical Transformation (ISBGT) in support of NAVFAC's evaluation of ISBGT to remediate site contaminants. ISBGT uses in place mineral reactions to force abiotic reactions to promote volatile organic compound (VOC) degradation. Two rounds of injections were conducted in 2016 at several Site 3 wells. The first injection event was conducted between June 7 and June 22, 2016 to stimulate ISBGT in former Burn Pit #1 and former Burn Pit #2. A second injection event, which included injecting the same amendments injected during the first injection event, was conducted between November 29 and December 5, 2016 for continued implementation to promote biogeochemical transformation of the COCs. As a supplement, organic amendments (e.g., lactate) were also injected to foster biological degradation using in-situ microbes. Several post-injection groundwater sampling events were conducted in 2016 and 2017 to evaluate the results of the amendment injections. The report "In-situ Biogeochemical Transformation Application at Site 3, Former Burn Pits 1 and 2 at NSA Mechanicsburg, Mechanicsburg, PA" provides a full interpretation of the ISBGT pilot study results (Battelle, 2019).

In 2017, a NAVFAC compliant Tier II Sampling and Analysis Plan (SAP) (AMS-Rhea JV, 2017), with a Uniform Policy-Quality Assurance Project Plan (UFP-QAPP), was generated to guide the Site 3 groundwater monitoring. Under the SAP, 48 wells are to be analyzed for the COCs listed in Table 2-1 (select VOCs, PCBs – [Aroclor 1260 only], arsenic, and manganese), along with additional United States Environmental Protection Agency (EPA) Method 8260 list VOCs and iron (total). In addition, a subset of nine select wells are to be analyzed for geochemistry parameters [alkalinity (total), ammonia, chloride, iron (dissolved), nitrate, nitrite, sulfate, sulfide (total), and total organic carbon], dissolved gases (ethane, ethene, and methane), and dechlorinating bacteria (Dehalococcoides [DHC], tecA reductase, BAV1 VC reductase [BVC], and VC reductase [VCR]). The December 2017 monitoring was the first event conducted under the new SAP. The additional EPA 8260 list VOCs (i.e., VOCs not defined as COCs in the ROD or VOCs that were subsequently removed from the COC list) were removed from the sampling program prior to the 2020 annual monitoring with EPA and Pennsylvania Department of Environmental Protection (PADEP) concurrence.

This report documents the work performed and presents the sampling results for the June 2020 monitoring event. COCs from this round of groundwater sampling are compared to the previous rounds of monitoring to identify concentration trends over time.

3.0 PROJECT ACTIVITIES

3.1 Field Work Performed

A comprehensive round of synoptic water level measurements was performed between June 22 and June 23, 2020, prior to beginning well purging/sampling activities. There was no precipitation during well gauging activities (Weather Underground, 2020). Monitoring well S03M11 was missed during the initial gauging round due to overgrown vegetation but was subsequently gauged on July 1, 2020. Water levels were measured at 64 Site 3 monitoring wells, 8 Site 8 monitoring wells, and 2 Site 9 monitoring wells to allow for interpretation of groundwater flow patterns within and exterior to Sites 3, 8, and 9. During the visit to each well, depth to water and total well depth below top of riser (TOR) were measured and recorded. Table 3-1 is a listing of wells in which water level was measured with both water depth (feet [ft] below TOR) and water level elevation (feet above National Geodetic Vertical Datum). Water level measurement forms are provided in Appendix A-1.

From June 23 through July 1, 2020, 41 monitoring wells were sampled at Site 3, 3 monitoring wells were sampled at Site 8, and 2 monitoring wells were sampled at Site 9 in accordance with the *Final Tier II Sampling and Analysis Plan, Annual Groundwater Sampling and Reporting, NSA Mechanicsburg* (AMS-Rhea JV, 2017). Monitoring wells included in the sampling program are shown on Figure 2-1 and listed in Table 3-2. Monitoring wells S03M61S and S03M64D3 were not sampled due to a lack of water. Monitoring well S03M63D3 was unable to be sampled at the mid-screen depth of 330 feet below TOR. After multiple unsuccessful attempts were made to install the pump to the required depth, S03M63D3 was sampled at a depth of approximately 260 feet below TOR following 40 minutes of purging.

Stainless steel submersible bladder pumps (with dedicated teflon-lined, polyethylene bladders and tubing) were used to purge and sample each well using low-flow sampling methods. The pump intake depth for all monitoring wells was generally set to the middle of the well screen interval to correlate with water producing zones as indicated on Table 3-2 (monitored interval). Water quality parameters (WQPs), including pH, conductivity, oxidation reduction potential (ORP), dissolved oxygen (DO), temperature, and turbidity were recorded approximately every five minutes during purging on field forms (Appendix A-2). Each monitoring well was considered stable once WQPs achieved the following criteria over three consecutive readings:

Parameter	Stabilization Criteria
pН	+/- 0.1 pH units
Conductivity	+/- 3% milliSiemens per centimeter (mS/cm)
ORP	+/- 10 millivolts (mV)
DO	+/- 10% parts per million
Temperature	+/- 10% °C
Turbidity	<10 Nephelometric Turbidity Units (NTUs) or +/- 10%

Subsequent to stabilization, the in-line water monitoring device/flow cell was disconnected from the well and groundwater samples were collected. Groundwater samples were collected directly from the discharge of the sampling pump into the appropriate laboratory-prepared, pre-preserved sample bottles for the types of analysis to be performed. Quality assurance (QA) and quality control (QC) samples were collected during sampling activities. Trip blanks, equipment blanks, duplicate samples, and matrix spike/matrix spike duplicate (MS/MSD) samples were collected and submitted for laboratory analysis at the following frequencies:

- Duplicate samples 1 per 10 samples;
- MS/MSD samples 1 per 20 samples;
- Equipment blanks 1 per week; and
- Trip blanks 1 per shipping cooler containing samples for VOCs analysis.

Groundwater samples were placed on ice immediately after collection. Samples were either picked up by a designated courier for delivery to the laboratory, or alternatively, delivered by AMS-Rhea personnel to a FedEx location for shipment to the laboratory when a courier was not available. A completed chain-of-custody form

accompanied the samples from the time of collection to receipt by the laboratory. Completed chain-of-custody forms are provided in Appendix A-3.

3.2 Laboratory Analysis

Groundwater samples were analyzed for Aroclor-1260, arsenic, manganese, iron (total), and select VOCs at SGS-Accutest Laboratory, located in Dayton, New Jersey. In addition, groundwater samples from nine monitoring wells (S03M17, -18, -41, -48, -49, -50, -54, -63D3, and -64D1) were analyzed for alkalinity, ammonia, chloride, dissolved iron, nitrate, nitrite, total organic carbon, sulfate, sulfide, dissolved gases (methane, ethane, and ethene), and dechlorinating bacteria. Dechlorinating bacteria samples were analyzed by Microbial Insights, Inc., located in Knoxville, Tennessee.

Per the recommendation of the Fourth Five Year Review (Navy, 2018), laboratory analysis of 1,2,4-TMB was performed for groundwater samples collected at Site 3 during the June 2020 sampling event in light of the new PADEP Statewide Health Standard Medium Specific Concentration (MSC) of 15 micrograms per liter (μ g/L). 1,2,4-TMB was not detected at a concentration above the MSC during the June 2020 sampling event; therefore, it is not included in subsequent discussions of analytical results within this report.

3.3 Data Tracking and Validation

Chain-of-custody entries were checked against the sampling schedule to determine if all designated samples were collected and submitted for the appropriate analyses. Upon receipt of the samples by the laboratory, a comparison with the field information was made to verify that each sample was analyzed for the correct COCs. In addition, a check was made to confirm that the correct number and types of QA/QC samples were collected.

The laboratory analytical results were validated in accordance with the EPA Region III Data Validation Guidelines, the National Functional Guidelines, and the project SAP/QAPP (AMS-Rhea JV, 2017). Analytical data was evaluated to determine if the data met data quality objectives, completeness, and to document data quality and usability. Particular emphasis was placed on holding time compliance, equipment calibration, spike recoveries and blank results. No major issues were encountered following the validation process; however, minor qualifiers were added to the VOC and PCB data. Data validation reports are included in Appendix C.

4.0 GROUNDWATER POTENTIOMETRIC SURFACE

Groundwater elevations were calculated from depth to water measurements (Table 3-1) and used to generate potentiometric surface maps centered on Sites 3 and 8. This section presents an interpretation of the contoured maps for the shallow and intermediate/deep bedrock potentiometric surfaces with a discussion of vertical head differentials. Appendix B-1 presents historical groundwater elevation data and well construction information.

Figure 4-1 is a shallow bedrock potentiometric surface map indicating localized Site 3 potentiometric surface highs are present in the area of former Burn Pit #1 (S03M47 through S03M50, S03M53, and S03M54) and near former Burn Pit #2 (S03M25, S03M26, S03M28, S03M57 and S03M58). Elevated groundwater levels are also observed in the Defense Reutilization Marketing Offices (DRMO) area to the east (S03M66D1 and S03M46). Locally, groundwater flows radially from these potentiometric surface highs. Comparison of Figure 4-1 to groundwater flow maps in historic monitoring reports show that the localized mounding at Site 3 is consistently observed. The cause of the localized mounding is unknown, but may be related to past activities at the burn pits.

Figure 4-2 depicts the intermediate/deep bedrock potentiometric surface for Site 3, which indicates potentiometric surface highs located in the area of former Burn Pit #1 (S03M70) and in the DRMO area to the east (S03M66D2). From the potentiometric surface high in the area of former Burn Pit #1, intermediate/deep bedrock groundwater is flowing to the north-northwest towards potentiometric surface lows at S03M71 and S03M73D2 and, to a lesser extent, radially to the south and west. Intermediate/deep bedrock groundwater in the area of S03M66D2 is flowing to the east towards S03M67D2 and north-northwest towards the potentiometric surface low northeast of former Burn Pit #2 near S03M15.

Overall, the lowest groundwater levels in the shallow and intermediate/deep bedrock at Site 3 are located north of the site, indicating that the general Site 3 groundwater flow direction is to the north-northwest.

The measurement of all well water levels in a short period of time allows for evaluation of vertical head differentials. This analysis was performed for 13 well clusters using the 2020 measurements. The following well clusters were evaluated:

- eastern perimeter of Site 8 (S03M01/S03M05);
- northern perimeter of Site 3 (S03M02/S03M06);
- northern and eastern perimeters of Site 3 (S03M03/S03M07);
- southern perimeter of Site 8 (S03M04/S03M08);
- eastern side of Site 3 (S03M61S/S03M61D and S03M62S/S03M62D);
- east of Site 3 (S03M66D1/S03M66D2 and S03M67D1/S03M67D2);
- west of the Site 3 (S03M69D1/S03M69D2);
- south of the Site 3 (S03M68D1/S03M68D2);
- between the two burn pits (S03M73D1/S03M73D2); and
- within the former burn pits (S03M63D1/S03M63D2/S03M63D3 and S03M64D1/S03M64D2/S03M64D3).

Well locations are indicated on Figures 4-1 and 4-2 with the results of the vertical head differential evaluation presented in Table 4-1.

An upward vertical head differential was observed at three well clusters while downward vertical head differentials were observed for nine well clusters (Table 4-1). The vertical head differentials for well clusters S03M02/S03M06, S03M61S/S03M61D, S03M63D1/S03M63D2, and S03M64D1/S03M64D2 seem to be significantly downward while the vertical head differential for well cluster S03M63D2/S03M63D3 seems to be significantly upward, although the magnitude of the vertical head differential may be related to dynamic

conditions due to variable or slow recharge and pressure build-up within the wells. Vertical head differentials less than 0.10 feet were determined too small to accurately determine a direction. Monitoring well S03M64D3 did not contain sufficient water at the time of the sampling event (monitoring well may be compromised); therefore, a vertical head differential could not be determined for well cluster S03M64D2/S03M64D3. Monitoring well S03M64D3 was also dry during the 2017, 2018, and 2019 sampling events; however, well cluster S03M64D2/S03M64D3 did not have a significantly downward vertical head differential during the 2016 sampling event. Overall, the vertical head differential data suggests that large-scale vertical groundwater movement is primarily downward, and that vertical movement is mainly observed at well clusters S03M02/S03M06, S03M61S/S03M61D, S03M63D1/S03M63D2, and S03M64D1/S03M64D2.

January 2021

5.0 JUNE 2020 ANALYTICAL RESULTS

The 2020 sampling results indicate the site COCs (Table 2-1) were detected in multiple samples at concentrations above and below their respective Preliminary Remedial Goals (PRGs) or Maximum Contaminant Levels (MCLs) concentration. The site PRGs are defined in the ROD for Site 3 Groundwater (Navy, 2004).

Table 5-1 provides a summary level analysis for the detected COCs, geochemical parameters, gases, and dechlorinating bacteria. The table includes frequency of detection, minimum and maximum concentrations (location of sample containing maximum concentration are provided), averages of positive detections, and averages of all results. Table 5-2 provides detailed data results for all analytes and shading to indicate if a concentration for a COC exceeds the target concentration. A summary of analytical results for each analyte group is provided below.

VOCs

- 1,4-Dichlorobenzene was detected in 24 percent (11 of 46) of the locations sampled with a range from 0.97^2 estimated value (J) μ g/L to 85 μ g/L. One sample location had a result that exceeded the MCL (75 μ g/L).
- Benzene was detected in 32 percent (15 of 46) of the locations sampled with a range from 0.46 J μ g/L to 384 μ g/L. Eight locations had results that exceeded the MCL (5.0 μ g/L).
- Carbon tetrachloride was not detected in the locations sampled.
- Chlorobenzene was detected in 30 percent (14 of 46) of the locations sampled with a range from 0.73 J μ g/L to 1,450 μ g/L. Seven locations had results that exceeded the MCL (100 μ g/L).
- Cis-1,2-DCE was detected in 58 percent (27 of 46) of the locations sampled with a range from 0.55 J μ g/L to 7,280 μ g/L. Three locations had results that exceeded the MCL (70 μ g/L).
- TCE was detected in 50 percent (23 of 46) of the locations sampled with a range from 0.58 J μ g/L to 92 μ g/L. Eight locations had results that exceeded the MCL (5.0 μ g/L).
- VC was detected in 32 percent (15 of 46) of the locations sampled with a range from 1.1 μ g/L to 2,570 μ g/L. Eleven locations had results that exceeded the MCL (2.0 μ g/L).

Polychlorinated Biphenyls (PCBs)

Aroclor-1260 is the brand name for a Monsanto Chemical Company product that is classified as a PCB. This group of chemicals has an MCL of 0.50 μg/L (EPA, 2009). Aroclor-1260 was detected in 13 percent (6 of 46) of the locations sampled with a range from 0.23 J μg/L to 7.5 μg/L. Three locations had results that exceeded the MCL.

Metals

• Arsenic was detected in 70 percent (32 of 46) of the locations sampled with a range from 0.96 J μ g/L to 41 μ g/L. Ten locations had results that exceeded the MCL (10 μ g/L).

• Manganese was detected in 78 percent (36 of 46) of the locations sampled with a range from 1.4 J μ g/L to 684 μ g/L. Two locations had results that exceeded the PRG (314 μ g/L).

Table 5-3 presents a listing of the wells where PRGs/MCLs were exceeded in the 2011 through 2020 sampling events. The shaded cells in Table 5-3 indicate a concentration increase between the previous and current year values. As shown on Table 5-3, the number of June 2020 COC exceedances is relatively consistent, for most COCs, with the number of COCs that have exceeded their respective PRGs/MCLs in past sampling rounds.

² Numbers presented in the text have been rounded to two decimal places if less than one, one decimal place if greater than one but less than ten, and to the nearest whole number if greater than ten. Analytical results within one of their respective standard have not been rounded.

Geochemistry Parameters

- Alkalinity was detected in 100 percent (9 of 9) of the locations sampled with a range from 225 milligrams per liter (mg/L) to 1,190 mg/L. Higher alkalinity concentrations are more favorable for degradation of chlorinated hydrocarbons. The highest concentrations of alkalinity were observed within source wells S03M50 and S03M64D1, which are centrally located within the boundaries of former Burn Pits # 1 and 2, respectively.
- Ammonia was detected in 77 percent (7 of 9) of the locations sampled with a range from 0.37 mg/L to 4.4 mg/L. The presence of ammonia in groundwater is indicative of reducing conditions that are favorable for degradation of chlorinated hydrocarbons.
- Chloride was detected in 100 percent (9 of 9) of the locations sampled with a range from 1.0 J mg/L to 43 mg/L. The highest concentration of chloride was observed within source well S03M50. Higher concentrations of chloride in the most contaminated zones of the plume provides a line of evidence that biodegradation is occurring. Chloride is released into groundwater during biodegradation of chlorinated hydrocarbons.
- Nitrite was not detected at any of the locations sampled in June 2020. The presence of nitrite in groundwater is indicative of reducing conditions that are favorable for the degradation of chlorinated hydrocarbons.
- Nitrate was only detected in one sample at a concentration of 0.13 mg/L. Low concentrations of nitrate (i.e., less than 1.0 mg/L) are favorable for the degradation of chlorinated hydrocarbons.
- Total Organic Carbon was detected in 100 percent (9 of 9) of the locations sampled with a range from 1.1 mg/L to 42 mg/L. Total Organic Carbon concentrations exceeded 20 mg/L in the sample collected from S03M64D1. Total Organic Carbon concentrations greater than 20 mg/L can drive dechlorination.
- Sulfate was detected in 100 percent (9 of 9) of the locations sampled with a range from 1.4 J mg/L to 131 mg/L. Sulfate concentrations were less than 20 mg/L in 3 of 9 samples. Low concentrations of sulfate (i.e., less than 20 mg/L) are favorable for the degradation of chlorinated hydrocarbons.
- Sulfide was detected in 33 percent (3 of 9) of the locations sampled with a range from 0.49 J mg/L to 1.2 J mg/L.

Dissolved Gases

- Methane was detected in 88 percent (8 of 9) of the locations sampled. The presence of methane in groundwater is indicative of strongly reducing, methanogenic conditions that are favorable for efficient reductive dechlorination. In general, methane concentrations higher than background indicate that methanogenesis is occurring.
- Ethane and ethene were detected in 77 percent (7 of 9) of the locations sampled. Ethene is a daughter product of VC, and ethane is a daughter product of ethene. Therefore, the presence of these gases suggests that reductive dechlorination is proceeding to completion.

Dechlorinating Bacteria

• DHC was detected in 100 percent (9 of 9) of the locations sampled with a range from 3.5 cells per milliliter (cells/mL) to 165,000 cells/mL. The likelihood of attenuation is considered high when DHC population sizes are greater than 10,000 cells/mL, moderate when DHC population sizes are between 10 and 10,000 cells/mL, and low at DHC population sizes less than 10 cells/mL (Lu et al., 2006). Cell populations were in the low range in one sampled location, in the moderate range in five sampled locations, and in the high range in three sampled locations in 2020. The lowest cell populations were observed in the two deepest wells sampled for DHC (S03M63D3 and S03M64D1).

Table 5-4 presents the results of groundwater quality parameter measurements taken during sampling (collected using a flow-through cell and turbidity meter). The measured values that were recorded in June 2020 are generally consistent with values that have been recorded in past sampling rounds. Approximately half of the ORP values were negative. Negative ORP values are favorable for the natural attenuation of chlorinated VOCs. Most of the DO values were between the favorable (<0.50 mg/L) and unfavorable (>5.0 mg/L)

screening values, but the degradation of chlorinated VOCs can proceed in this range. Elevated pH values were observed in monitoring well clusters S03M63, S03M464, and S03M66 in 2020, consistent with elevated pH values recorded at these clusters in recent years. Appendix B-2 presents historic groundwater analytical results.

6.0 DISCUSSION OF ANALYTICAL RESULTS AT SITE 3

The presence of TCE and reductive dechlorination by-products [cis-1,2-DCE, and VC] indicates that degradation is on-going at the site, primarily in shallow/intermediate groundwater. In some cases, concentrations of TCE were lower than that of cis-1,2-DCE and VC in the shallow groundwater, most notably in the samples from S03M41 (former Burn Pit #2 source area) and S03M50 (former Burn Pit #1 plume). The concentration of TCE was also lower than that of cis-1,2-DCE and VC in the intermediate groundwater at S03M64D1 and S03M64D2 (former Burn Pit #2), and in the deep groundwater at S03M70 (immediately south of former Burn Pit #1). Elevated concentrations of daughter products cis-1,2-DCE and VC compared to TCE within well S03M41 and S03M50 suggests that reductive dechlorination is occurring in these areas. However, in the intermediate groundwater at S03M63D1, S03M63D2, S03M66D2, and S03M73D1, the TCE concentration was greater than VC. The concentration of TCE also exceeded VC in the deep groundwater at well S03M63D3, and to a lesser extent, S03M72. Chlorobenzene was predominantly detected around former Burn Pit #2, with only minimal detections in the center of former Burn Pit #1 at S03M50 and S03M54. In general, exceedances of groundwater quality criteria for chlorinated VOCs at Site 3 extend approximately 300 ft east of Burn Pit #2.

The TCE, cis-1,2-DCE, and VC isoconcentration contours are shown in three separate maps to allow the depiction of VOC concentration changes with depth. The intervals shown are the shallow interval (represented by monitoring wells screened from 7.0 to 110 ft below ground surface [bgs]), intermediate interval (represented by monitoring wells screened from 145 to 270 ft bgs), and deep interval (represented by monitoring wells screened from 300 to 358 ft bgs). The TCE isocontours are shown on Figures 6-1a through 6-1c, the cis-1,2-DCE isocontours are shown on Figure 6-2a through 6-2c, and the VC isocontours are shown on Figure 6-3a through 6-3c. Isoconcentration maps for three remaining COCs (chlorobenzene, manganese, and arsenic) are presented on Figures 6-4 through 6-6.

The two Site 9 wells (DD-1 and DD-7D), to the north of Site 3, have only low concentrations of TCE, iron, and manganese. All COCs were detected below their respective MCL/PRG in DD-1 and DD-7D (Figure 6-7). The VOC concentrations detected in wells DD-1 and DD-7D are consistent with historical data (Appendix B-2).

6.1 Extent of Contamination

The isoconcentration contours depicted in Figure 6-1a through Figure 6-4 indicate the former Burn Pits as the two primary areas of elevated VOC concentration. As with the mapping of any well concentrations and interpretation of plume extent, bias is introduced by the number and location of wells available for each interval. Observations related to TCE, cis-1,2-DCE, VC, chlorobenzene, manganese, and arsenic distribution are provided in the following bullets.

- TCE concentrations in the shallow interval wells of former Burn Pit #1 (Figure 6-1a) are less than the MCL, with the highest concentration in well S03M51 (1.3 μ g/L). In former Burn Pit #2, a plume of TCE is depicted from the highest concentration in well S03M18 (50 μ g/L) to the east towards S03M46.
- Figure 6-1b depicts TCE concentrations as measured in the wells screened from 145 to 270 ft bgs (intermediate interval) with the maximum concentration essentially centered in former Burn Pit #1 at well S03M63D2. Of the three wells sampled in this area, well S03M63D2 has the deepest screen interval (250 to 270 ft bgs) and highest TCE concentration (73 μg/L) indicating TCE concentrations increasing with depth. The TCE plume extends north-northeast from former Burn Pit #1 towards former Burn Pit #2. Localized TCE exceedances are also present in former Burn Pit #2 at S03M64D1 (7.5 μg/L) and in the DRMO area to the east of former Burn Pit #2 at S03M66D2 (6.3 μg/L).

January 2021

- TCE concentrations for samples collected from the deepest screen interval wells (300 to 358 ft bgs) are depicted in Figure 6-1c and indicate a plume limit essentially centered in former Burn Pit #1. Sample results for five wells in or near the footprint of former Burn Pit #1 indicate the highest concentrations directly beneath the pit footprint (S03M63D3) with a low concentration extension to the north-northwest to well S03M71. The lone deep well in former Burn Pit #2, S03M64D3, did not contain sufficient water and could not be sampled. Plume extent in the deep interval cannot be interpreted in the former Burn Pit #2 area; however, it should be noted the TCE concentration in well S03M64D3 was similar to S03M63D3 in 2016.
- Figures 6-2a to c and 6-3a to c depict the plume configurations of cis-1,2-DCE and VC, respectively. The highest concentrations of cis-1,2-DCE and VC occur at shallow wells S03M41 and S03M50 (Figures 6-2a and 6-3a), positioned over former Burn Pit #1 and immediately east of former Burn Pit #2, respectively. TCE was either not detected or was detected at a low, estimated concentration at S03M41 and S03M50, indicating that TCE has degraded in these areas. DHC, BVC, and VCR counts within S03M41 and S03M50 indicate local conditions are favorable for the sustainment of VOC-degrading bacteria.
- Figure 6-4 depicts the chlorobenzene isoconcentrations at Site 3. The highest concentrations of chlorobenzene occur within the footprint of former Burn Pit #2 at shallow wells S03M18 (1,450 μg/L) and S03M57 (1,150 μg/L) and immediately east of former Burn Pit #2 at shallow well S03M03 (1,020 μg/L). Chlorobenzene was either not detected or detected at levels below the MCL in the area of former Burn Pit #1. The chlorobenzene plume in the area of former Burn Pit #2 is generally centered within the burn pit and extends to the east towards the DRMO area.
- Figure 6-5 depicts the manganese isoconcentrations at Site 3. The highest concentrations of manganese (and only exceedances of the PRG) occur within shallow wells S03M54 (643 μg/L) and S03M17 (684 μg/L) at former Burn Pit #1 and former Burn Pit #2, respectively.
- Figure 6-6 depicts the arsenic isoconcentrations at Site 3. The highest concentrations of arsenic occur at deep well S03M70 (40.6 μ g/L), immediately south of former Burn Pit #1, and shallow well S03M18 (41.2 μ g/L), centered in former Burn Pit #2. In the area of former Burn Pit #1, arsenic exceeded the MCL at one deep well, S03M70. An arsenic plume in the area of former Burn Pit #2 is centered in the northeast portion of the burn pit and extends north, east, and northwest. Arsenic was also detected above the MCL at well cluster S03M66D1/D2 (32.6/26.9 μ g/L) in the DRMO area to the east of Site 3.
- In general, the VOC contaminant plumes shown in Figure 6-1a through Figure 6-4 are similar in size and shape as those observed in previous sampling events performed since 2008. Additionally, the contaminant plumes for manganese and arsenic shown in Figures 6-5 and 6-6 have generally remained stable since 2017. VOC contaminant plumes are generally present in the vicinity of the former Burn Pits with an eastward component at former Burn Pit #2.

6.2 Contaminant Trend Evaluation

An evaluation of chemical trends over time was performed for the shallow groundwater at Site 3 to assess changes in COC concentrations and evaluate plume stability. Concentration versus time plots (Graphs 6-1 through 6-7) were prepared for six prevalent contaminants [TCE, cis-1,2-DCE (or total 1,2-DCE if cis-1,2-DCE is not provided in historical results), VC, chlorobenzene, manganese, and arsenic].

The wells were selected to represent source and downgradient locations in the shallow interval, which include the following monitoring wells/well clusters:

6-2

• S03M50 and S03M54 (former Burn Pit #1 source area);

- S03M17 and S03M18 (former Burn Pit #2 source area);
- S03M44 (lesser area of elevated VOCs downgradient of former Burn Pit #2); and
- S03M46 (southeastern edge of the Site 3 plume).

Note that the concentration scales for VOCs are on the left side of the graphs and on the right side for manganese and arsenic. Arsenic concentrations versus time were also plotted for the wells on one graph (Graph 6-7) because trends were difficult to discern in the concentration versus time plots for individual wells.

The following is a summary of the trend analyses from the concentration versus time graphs.

- S03M50 (Graph 6-1): Following the chemical oxidant injection in October 2004, VOC concentrations rapidly decreased as indicated by the results from the August 2005 sampling event. TCE concentrations have generally been below the MCL since 2013, with the exception of 2015. Cis-1,2-DCE generally increased from 2009 to 2016, decreased dramatically to below the MCL in 2017, and rebounded to above the MCL in 2018 (2,240 μg/L), 2019 (7,300 μg/L), and 2020 (7,280 μg/L). The VC concentration decreased dramatically in 2017 (but remained above the MCL) and rebounded in 2018 (782 μg/L), 2019 (4,830 μg/L), and 2020 (2,570 μg/L). The rapid reduction of cis-1,2-DCE and VC in the 2017 sampling round most likely resulted from the injections for ISBGT. Manganese concentrations decreased between 2010 through 2016, increased in 2017, decreased through 2019, and rebounded in 2020. Chlorobenzene exceeded the MCL from 2015 to 2019 but dropped below the MCL in 2020 (89 μg/L).
- <u>S03M54 (Graph 6-2)</u>: Overall VOC concentrations increased after the chemical oxidation injection activities were performed, then decreased since 2008. Manganese concentrations spiked following the Phase II injection activities but have generally exhibited stable to decreasing concentrations. Manganese and VC concentrations have exceeded their respective PRG and MCL values since 2017. The presence of TCE breakdown products cis- 1,2-DCE and VC, along with the decreasing concentration of TCE, indicates that reductive dechlorination is occurring.
- S03M17 (Graph 6-3): Concentrations of TCE and cis-1,2-DCE exhibit an overall decreasing trend. VC exhibited a relatively stable trend from 2013 to 2020. Chlorobenzene is the primary contaminant found in this well, with lesser concentrations of other VOCs. The chlorobenzene concentrations exhibited a decreasing trend from 2004 and 2011, increased between 2012 and 2014, and have remained relatively stable from 2015 to 2020. The concentration of arsenic increased above the MCL in 2019 (33 μg/L) but decreased to below the MCL in 2020, while the concentration of manganese (684 μg/L) has remained stable since 2018. Concentrations of benzene, chlorobenzene, VC, Aroclor-1260, and manganese were greater than their respective MCLs/PRGs in 2020. Overall VOC concentrations in this source area well are either stable or decreasing slightly.
- S03M18 (Graph 6-4): VOC concentrations decreased significantly during the Phase I and II chemical oxidant injections then rebounded somewhat before leveling off by 2009. Chlorobenzene, the primary contaminant found in this well, presents an overall decreasing but unstable trend. Concentrations of TCE and VC have remained relatively constant from 2009 to 2020. Manganese concentrations spiked following the Phase I and II injection activities and have decreased since, while concentrations of arsenic were generally stable from 2009 to 2020. In the 2020 sample results, concentrations of benzene, chlorobenzene, cis-1,2-DCE, TCE, VC, and arsenic were all greater than their respective MCLs/PRGs; however, a concentration of cis-1,2-DCE greater than the concentration of TCE indicates anaerobic biodegradation is progressing. Decreases in parent product (TCE) concentrations with accompanying increases in daughter product concentrations (cis-1,2-DCE and VC) are generally observed during biodegradation.
- <u>S03M44 (Graph 6-5)</u>: VOC concentrations increased after the chemical oxidation injection activities were performed but have decreased since 2005. Manganese concentrations notably spiked following the Phase I and II injection activities in 2004 and the ISBGT injections in 2016, but drastically

- decreased to below the PRG in 2019 and 2020. Overall VOC concentrations in this downgradient well decreased between 2015 and 2019; however, concentrations of cis-1,2-DCE, chlorobenzene, and TCE increased in 2020 with the concentration of TCE ($10 \mu g/L$) exceeding the MCL. VC concentrations have been less than their respective MCLs since 2017.
- <u>S03M46 (Graph 6-6)</u>: VOC concentrations in this downgradient well dropped significantly after the second round of chemical oxidant injection and have been generally stable since 2006 and decreasing since 2012. Chlorobenzene and VC concentrations were below the method reporting limit (i.e., non-detect) since at least 2009. In 2020 there are no COCs present at a concentration exceeding the MCL.
- Arsenic data (Graph 6-7): Arsenic levels in wells S03M17, S03M44, S03M46, S03M50, and S03M54 have generally remained low (below the MCL) since 2009, with the exception of monitoring well S03M17, which exceeded the MCL in 2019 (33 μg/L). Arsenic concentrations in S03M17 fell below the MCL in 2020 (4.5 μg/L). Arsenic concentrations within S03M18 remain above the MCL but decreased in 2019 and 2020 after sharply increasing in 2017 and 2018.

Graphs 6-8 through 6-13 present the same six contaminants that were presented in the line graphs, grouped by analyte. The concentration data are presented on a logarithmic scale to facilitate the presentation of a wide concentration range. Presentation of data in this format allows for visual assessment of long-term trends (or lack thereof) on an analyte-specific basis. Analysis of arsenic and manganese was not performed in 2013. The 2020 observations are summarized in the following bullets.

- <u>TCE (Graph 6-8)</u>: TCE concentrations have generally decreased among the wells graphed. Concentrations have decreased significantly overall in wells S03M17, S03M18, S03M41, S03M50, and S03M54.
- 1.2-DCE (cis- or Total) (Graph 6-9): Overall, 1,2-DCE concentrations exhibit stable to decreasing trends between 2001 and 2020. Concentrations in five of the wells decreased slightly or remained stable in 2020. The 1,2-DCE concentration decreased by three orders of magnitude at S03M50 in 2017, rebounded significantly in 2018 and 2019, and leveled off in 2020. The rapid reduction of 1,2-DCE at S03M50 in the 2017 sampling round most likely resulted from the injections for ISBGT. The 1,2-DCE concentration increased by an order of magnitude in 2020 at S03M17, S03M41, and S03M44.
- <u>VC (Graph 6-10)</u>: Similar to 1,2-DCE, VC concentrations exhibit stable to decreasing trends in six of the eight evaluated wells between 2001 and 2020. The concentration of VC at S03M17 decreased by three orders of magnitude in 2018 but rebounded in 2019 and 2020. The concentration of VC decreased by two orders of magnitude at S03M50 in 2017 but rebounded in 2018 and 2019. The rapid reduction of VC at S03M50 in the 2017 sampling round most likely resulted from the injections for ISBGT. VC was detected above the MCL at S03M49 from 2017 to 2019; however, VC was not detected at S03M49 in 2020. Elevated concentrations of VC at S03M49 from 2017 to 2019 coincide with a reduction in cis-1,2-DCE (see Graph 6-9), which indicates the progression of reductive dechlorination at this well. VC was not detected in the 2020 samples from wells S03M44 and S03M46.
- <u>Chlorobenzene (Graph 6-11)</u>: No overall trends in chlorobenzene concentrations are evident from the graph. The concentration in two wells decreased slightly in 2020. Chlorobenzene was not detected in wells S03M46 and S03M49 in 2020.
- Arsenic (Graph 6-12): Arsenic concentrations have generally remained stable or decreased slightly
 over time among the wells graphed. Arsenic increased in four wells in 2020 but remains under the
 MCL in seven of eight evaluated wells. Arsenic was not detected in the sample collected from
 S03M46.

• <u>Manganese (Graph 6-13)</u>: Manganese concentrations increased during the injection activities, and generally decreased or remained stable in seven of the eight evaluated wells.

Figures 6-8 through 6-12 present TCE, cis-1,2-DCE, VC, chlorobenzene, and manganese isoconcentrations, respectively, in Site 3 groundwater during the period from 2010 to 2020. Presenting the isoconcentration contours of six different sampling events on the same figures allows for a visual assessment of the change in shape and size of the contaminant plume. In general, the shapes of the plumes appear consistent and the sizes and concentrations have remained stable or decreased. Only the wells sampled during each event are shown in the appropriate frame of the figure.

The TCE plume proximal to former Burn Pit #1 and #2 appears to have remained the same size over the 2010-2012 timeframe (Figure 6-8). The decrease in the eastern extent of the TCE plume at former Burn Pit #2 can be attributed to a decrease in TCE concentrations to below the MCL at well cluster S03M67D1/67D2 since 2013. There has been a slight increase in the northern extent of the TCE plume at former Burn Pit #1 as shown on the 2014 through 2020 maps. Concentrations in the center of the former Burn Pit #2 plume have decreased by an order of magnitude since 2016, but concentrations have generally remained stable in the center of former Burn Pit #1 since 2012.

The cis-1,2-DCE (Figure 6-9) plumes in former Burn Pit #1 and #2 generally remained the same size from 2010-2012. There has been an increase in the northern extent of the plume at former Burn Pit #1 shown on the 2014 through 2020 maps. Elevated concentrations of cis-1,2-DCE were observed northeast of former Burn Pit #2 at S03M15 in the 2014 and 2016 maps, but the concentration has been below the MCL since 2018. The slight increase in the eastern extent of the cis-1,2-DCE plume at former Burn Pit #2 from 2018 to 2020 can be attributed to an increase in the concentration of cis-1,2-DCE at well S03M44 remains below the MCL (i.e., 70 µg/L).

The lateral extent and concentrations within the VC plumes (Figure 6-10) associated with former Burn Pits #1 and #2 have generally remained stable since 2010. The apparent smaller extent of the VC plume at former Burn Pit #1 in 2010 is primarily due to a lack of wells to the immediate north of the former burn pit boundary. Elevated concentrations of VC were observed northeast of former Burn Pit #2 at S03M15 between 2010 and 2018; however, the concentration of VC was slightly below the MCL in 2020. Assuming VC generation is a byproduct of biodegradation, it is typical to measure higher VC concentrations proximal to TCE hot spots, such as the Pit areas.

The chlorobenzene plume (Figure 6-11) associated with former Burn Pit #2 appears stable with minimal variance during the period from 2010 to 2020. Chlorobenzene concentrations at S03M50 in former Burn Pit #1 exceeded the MCL (i.e., $100 \,\mu\text{g/L}$) from 2015 to 2019 but was below the MCL in 2020.

The manganese plume extent (Figure 6-12) in Burn Pit #1 appears to have remained stable from 2010 to 2018 with a slight increase to the east and west in 2020. The extent of the manganese plume at former Burn Pit #2 increased between 2012 and 2014 and has generally remained stable through 2020.

Figure 6-13 presents a comparison of the TCE, cis-1,2-DCE, VC, and chlorobenzene plumes based on 2020 sampling data. The plumes for TCE, VC and cis-1,2-DCE have the largest lateral footprint in the area of former Burn Pit #1 while the plume for chlorobenzene is more localized. In the area of former Burn Pit #2, the contaminant plumes are centered in or adjacent to the former Burn Pit and extend eastward into the DRMO area. Overall, the contaminant plumes associated with former Burn Pit #1 have a north-south orientation while the plumes associated with former Burn Pit #2 have an east-west orientation.

6.3 Statistical Evaluation of Contaminant Trend Data

A quantitative evaluation of concentration trends over time was performed using the Mann-Kendall statistic at the 80, 90, and 95 percent confidence levels for all six primary COCs (TCE, 1,2-DCE (cis- or total), chlorobenzene, VC, arsenic, and manganese) and total VOCs. The Mann-Kendall analysis focused primarily on wells screened in the shallow groundwater. The Mann-Kendall analysis was constrained to data from August 2004 (during the Phase II injections) through June 2020. Statistical trend analysis was conducted on a subset of 26 wells (generally in the shallow interval) that have sufficient data points and provide good coverage across the site.³ The results of the statistical trend analyses are presented in Tables 6-1 through 6-7. Additional statistical trend analysis was conducted in 2020 for a subset of eight wells screened in the intermediate and deep intervals. The results of the additional statistical trend analysis are presented in Table 6-8.

The Mann-Kendall trend analysis compares all of the pairs of concentration values, counts the number of pairs where values are increasing, and subtracts the number of pairs that are decreasing. If there are more pairs that are increasing in concentration, then an upward trend is predicted. If there are more pairs that are decreasing in concentration, then a downward trend is predicted. A trend was considered statistically significant if it passed the 80 percent confidence level test and not significant if a trend was suggested by the data but did not pass the 80 percent confidence level test.

For Tables 6-1 through 6-7, the results are separated into the Pit #1 and #2 source areas and their plumes, the down gradient plume fringe, and Site 9 with trend predictions for the 80, 90, and 95 percent confidence levels (Alpha = 0.20, 0.10, and 0.05, respectively). The results for the 80 percent confidence level are discussed below for total VOCs and the COCs.

Table 6-1 (Total VOCs)

- The analysis for the Burn Pit #1 source area indicates two wells with significant downward trends and one well with no discernible trend (S03M50). In the Burn Pit #2 source area wells, one well has no discernible trend (S03M15) with the remaining four wells showing a decrease in total VOC concentration over time. The results for the wells located in the Burn Pit #1 plume indicate one well with a significant downward trend (S03M49) and one well with a significant upward trend (S03M52). All six wells located in the Burn Pit #2 plume show significant downward trends. The majority of the plume fringe wells also indicate a decreasing total VOC concentration trend at the 80, 90, and 95 percent confidence levels. The results for monitoring wells S03M13 and S03M51, located in the plume fringe, shows no discernible trend at the 80, 90, and 95 percent confidence level. Site 9 wells DD-1 and DD-7D indicate a discernible trend of decreasing concentrations at the 80, 90, and 95 percent confidence levels. The indication of overall decline in total VOC concentration may be a result of the past in-situ treatments but is likely a result of the progression of on-going biodegradation.

Table 6-2 (TCE)

- The Mann-Kendall trend analysis for TCE revealed significant downward trends in the two Pit source areas, plumes, and plume fringe wells. Of the 26 wells in this data set, three well locations had no discernible trend, one well location had a significant upward trend (S03M07) and 20 well locations had a significant downward trend including Site 9 wells DD-1 and DD-7D. The significant upward trend at monitoring well S03M07 was likely influenced by an increase in the method reporting limit in 2019 due to sample dilution. Monitoring wells S03M13 and S03M57 lacked a sufficient number of detected concentrations and were not subject to Mann-Kendall analysis.

³ Wells must be sampled at least four times and have at least two detections for Mann-Kendall analysis to determine a trend.

Table 6-3 [1,2-DCE (cis- or total)]

- The Mann-Kendall trend analysis for 1,2-DCE (cis- or total) revealed significant downward trends at 18 well locations and no discernible trend at 6 well locations. Monitoring wells S03M20 and S03M21 lacked a sufficient number of detected concentrations and were not subject to Mann-Kendall analysis.

Table 6-4 (VC)

- For this compound, the trend appears to be well-specific and is likely a function of the proximity of the well to an active area of TCE biodegradation. VC concentrations show a significant upward trend in Burn Pit #1 source area well S03M50. Former Burn Pit #2 source area wells S03M15 and S03M18 show no discernible trend and a significant downward trend, respectively. Of the four Pit plume wells, one shows no discernible trend, one shows a significant downward trend, and two show a significant upward trend (S03M41 and S03M48). For the plume fringe wells, six wells show a significant downward trend while three wells show no discernible trend. Ten well locations lacked a sufficient number of detected concentrations and were not subject to Mann-Kendall analysis.

Table 6-5 (Chlorobenzene)

- The Mann-Kendall trend analysis for chlorobenzene revealed significant downward trends at eight well locations, a significant upward trend at two well locations (S03M15 and DD-1), and no discernible trend at six well locations. Ten well locations lacked a sufficient number of detected concentrations and were not subject to Mann-Kendall analysis.

Table 6-6 (Arsenic)

- The Mann-Kendall trend analysis for arsenic revealed significant downward trends at seven well locations, significant upward trends at two well locations (S03M15 and S03M18) located in the Former Burn Pit #2 plume and one well location (S03M48) located in the plume fringe, and no discernible trend at ten well locations. Six well locations lacked a sufficient number of detected concentrations and were not subject to Mann-Kendall analysis.

Table 6-7 (Manganese)

- The Mann-Kendall trend analysis for manganese revealed significant downward trends at 13 well locations, significant upward trends at five well locations (S03M02, S03M13, S03M21, S03M44, and S03M62S), and no discernible trend at eight well locations.

Table 6-8 (Intermediate and Deep Wells)

- The Mann Kendall trend analysis for VOC COCs in intermediate and deep groundwater revealed generally favorable results as significant downward trends or no trends were observed for the analyzed contaminants, including TCE, at most well locations. However, significant upward trends of VC and chlorobenzene were observed in deep groundwater at S03M70.
- The Mann Kendall trend analysis for arsenic and manganese revealed a mix of significant downward trends, no trends, and significant upward trends in intermediate and deep groundwater. Notable findings include significant upward trends for both contaminants at S03M63D1, S03M70, and S03M73D1 and additional significant upward trends for manganese at S03M64D1 and S03M64D2.

7.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Based on the 2020 field work performed and evaluation of both hydrogeologic and analytical data, the conclusions and recommendations are summarized below.

7.1 Summary

From June 22 through July 1, 2020, 46 wells were sampled in accordance with the *Final Tier II Sampling and Analysis Plan, Annual Groundwater Sampling and Reporting, NSA Mechanicsburg* (AMS-Rhea JV, 2017). Monitoring wells S03M61S and S03M64D3 lacked sufficient water or were found to be dry and were not sampled. Monitoring well S03M63D3 was unable to be sampled at the mid-screen depth of 330 feet below TOR but samples were collected from approximately 260 feet below TOR.

Groundwater samples were analyzed at all well locations for ROD COCs 1,4-dichlorobenzene, benzene, carbon tetrachloride, chlorobenzene, cis-1,2-DCE, TCE, VC, PCB Aroclor-1260, arsenic, and manganese. Iron (total) and 1,2,4-TMB were also analyzed at all well locations to aid in the evaluation of the site and based on the recommendation in the Fourth Five Year Review, respectively. In addition, groundwater samples from nine monitoring wells were analyzed for alkalinity, ammonia, chloride, dissolved iron, nitrate, nitrite, total organic carbon, sulfate, sulfide, dissolved gases (methane, ethane, and ethene), and dechlorinating bacteria to evaluate groundwater conditions for attenuation.

Five COCs (TCE, VC, benzene, chlorobenzene, and arsenic) were frequently detected across the site and exceed their respective MCLs at numerous wells (see Table 5-1 for frequency of detection and number of exceedances). One COC (Aroclor-1260) was not detected frequently (6/46 locations) but exceeded the MCL at three locations. 1,4-dichlorobenzene exceeded the MCL at only one location (S03M64D1) while cis-1,2-DCE exceeded the MCL at three locations. Carbon tetrachloride was not detected in any well.

7.2 Conclusions

There are two primary areas of high VOC concentrations: former Burn Pit #1 and former Burn Pit #2, extending east near S03M41. Contaminant plume sizes and concentrations have generally decreased or remained stable from 2004 through 2020. The contaminant plume is stable and located within the site boundaries controlled by the Navy. LUCs have also been implemented as part of the remedial action for the Site 3 soils. As a result, restrictions on the use of Site 3-impacted groundwater are in place.

Mann-Kendall trend analyses was conducted for six primary COCs (TCE, 1,2-DCE (cis- or total), chlorobenzene, VC, arsenic, and manganese). Results were generally favorable with much more downward trending data (74 occurrences) than upward trending data (14 occurrences).

- TCE significant downward trend or less than two detections in 85 percent of evaluated wells.
- 1,2-DCE significant downward trend or less than two detections in 77 percent of evaluated wells.
- VC significant downward trend or less than two detections in 69 percent of evaluated wells.
- Chlorobenzene significant downward trend or less than two detections in 69 percent of evaluated wells.
- Arsenic significant downward trend or less than two detections in 50 percent of evaluated wells.
- Manganese significant downward trend in 50 percent of evaluated wells.

Long-term data suggests that reductive dechlorination of TCE has been occurring at Site 3 based on the presence of TCE biodegradation daughter products 1,2-DCE and VC. Geochemistry, dissolved gas, and

dechlorinating bacteria data provide supporting lines of evidence that groundwater conditions are conducive for anaerobic degradation.

7.3 Recommendations

As indicated at the February 2020 Tier II Partnering Team Meeting, it is the Navy's intention to conduct an optimization evaluation on the Site 3 monitoring program and network in 2021. Similar evaluations have been conducted at other Navy sites to assess the value of each monitoring well location in contributing to plume delineation and concentration trend evaluations. The evaluation will focus on optimizing the monitoring program in order to maximize cost-effectiveness without compromising program and data quality. As shown in Figures 6-8 through 6-13, multiple wells do not contribute to the plume shape, extent, or concentration content. The following five components are generally reviewed by the Navy to ensure a cost-effective monitoring program (Department of the Navy Guidance for Planning and Optimizing Monitoring Strategies, November 2010):

- Number and placement of monitoring points;
- Monitoring duration and/or frequency;
- Analytical protocols;
- Field procedures and techniques; and
- Data management, evaluation, and reporting.

The results of the optimization evaluation will be provided to the EPA and PADEP for review and acceptance prior to implementation. As indicated above, monitoring well S03M64D3 may be compromised and will need to be further evaluated for potential repair or replacement.

Groundwater sampling at Site 3 would resume with the 2022 groundwater sampling event in accordance with the approved monitoring program optimization recommendations. The 2020 analytical results are generally consistent with recent sampling rounds and sampling of many wells multiple times has provided data to confirm trends. It is also recommended to remove 1,2,4-TMB from the sampling suite prior to the next round of sampling based on the results of 2019 and 2020 data (no exceedances of the PADEP MSC).

8.0 REFERENCES

AMS-Rhea JV, 2017. Final Tier II Sampling and Analysis Plan, Annual Groundwater Sampling and Reporting, NSA Mechanicsburg. November

Battelle, 2019. In-situ Biogeochemical Transformation Application at Site 3, Former Burn Pits 1 and 2 at NSA Mechanicsburg, Mechanicsburg, PA.

EA Engineering, 2000. Final Report: Report on Soil Removal Action for Site 3 Burn Pits, Naval Support Activity (Formerly Naval Inventory Control Point), Mechanicsburg, Pennsylvania. U.S. Navy, Naval Facilities Engineering Command, Lester, Pennsylvania.

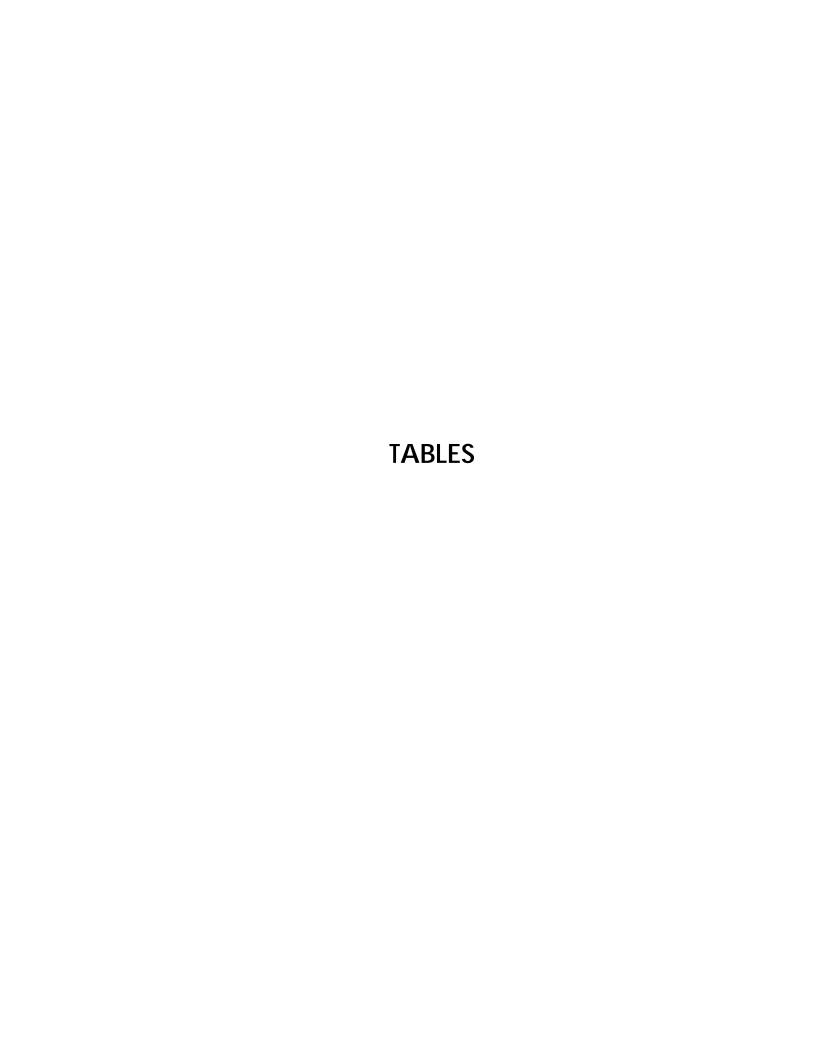
EPA, 2009. National Primary Drinking Water Regulations. EPA 816-F-09-04. May. http://water.epa.gov/drink/contaminants/

Lu et al., 2006. Relationship Between Dehalococcoides DNA in Ground Water and Rates of Reductive Dechlorination at Field Scale. August.

Navy, 2000. Record of Decision for Site 3 Soil: Ball Road Landfill and Burn Pits. Naval Support Activity Mechanicsburg, Pennsylvania.

Navy, 2004. Record of Decision for Site 3 Ground Water: Ball Road Landfill and Burn Pits. U.S. Navy, Naval Facilities Engineering Command, Lester, Pennsylvania.

Navy, 2010, Department of the Navy Guidance for Planning and Optimizing Monitoring Strategies


Navy, 2018. Fourth Five Year Review for Naval Support Activity Mechanicsburg, Cumberland County, Pennsylvania, Naval Facilities Engineering Command, Norfolk, Virginia. December.

Tetra Tech NUS, Inc. (TtNUS), 2007. June 2006 Groundwater Sampling Report, Naval Support Activity Mechanicsburg, PA. U.S. Navy, Naval Facilities Engineering Command, Lester, Pennsylvania.

TtNUS, 2008. Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) for Annual Groundwater Monitoring at Site 3-Ball Road Landfill and Burn Pits, Naval Support Activity Mechanicsburg, PA. U.S. Navy, Naval Facilities Engineering Command, Lester, Pennsylvania.

Weather Underground, 2020. Historical precipitation data accessed in July 2020. https://www.wunderground.com/

Watermark, 2016 Annual Groundwater Monitoring Report, Naval Support Activity, Mechanicsburg, Mechanicsburg, Pennsylvania.

Table 2-1 Contaminants of Concern Site 3 – Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

Parameter	COC Project Action Limit
Volatile Organics (µg/L)	
1,4-Dichlorobenzene	75
Benzene	5
Carbon Tetrachloride	5
Chlorobenzene	100
Cis-1,2-Dichloroethene	70
Trichloroethene	5
Vinyl Chloride	2
PCBs (µg/L)	
Aroclor-1260	0.5
Inorganics – Total Metals (µg/L)	
Arsenic	10
Manganese	314

Notes:

 $\mu g/L$ - micrograms per liter

COCs - contaminants of concern

COC project action limits are based on the 2004 Record of Decision for Site 3 Groundwater.

The project action limit is the Federal Maximum Contaminant Level (United States Environmental Protection Agency, 2009), or project specific Preliminary Remediation Goal, as established in the Site 3 ROD (Navy, 2004).

Table 3-1 Well Construction and Water Level Data, Site 3, Site 8, and Site 9 – 2020 Site 3 – Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

	Well		TOR Elevation	Sounded	Depth to Water	Groundwater
Site	Identification	Gauging Date	(feet, NGVD)	Depth	(feet below TOR)	Elevation
		2/22/22		(feet bgs)		(feet, NGVD)
	S03M02 S03M03	6/22/2020 6/22/2020	430.21 429.46	77.05 55.10	32.42 31.02	397.79 398.44
	S03M06	6/22/2020	429.56	132.40	39.48	390.08
	S03M07	6/22/2020	429.85	106.85	31.05	398.80
	S03M13	6/22/2020	428.34	250.18	23.61	404.73
	S03M14	6/22/2020	427.42	99.90	21.22	406.20
	S03M15 S03M16	6/22/2020 6/23/2020	428.32 427.31	254.00 147.40	30.31 25.71	398.01 401.60
	S03M17	6/23/2020	427.00	107.34	22.05	404.95
	S03M18	6/23/2020	427.65	107.21	22.54	405.11
	S03M19	6/23/2020	433.65	61.57	35.68	397.97
	S03M20	6/23/2020	427.67	100.52	2.71 22.62	424.96
	S03M21 S03M22	6/22/2020 6/22/2020	427.09 429.10	83.90 95.63	25.96	404.47 403.14
	S03M23	6/23/2020	427.31	100.32	16.39	410.92
	S03M24	6/23/2020	427.29	96.01	21.87	405.42
	S03M25	6/23/2020	427.17	90.71	16.03	411.14
	S03M26	6/23/2020	426.79	69.99	15.64	411.15
	S03M28 S03M29	6/23/2020 6/23/2020	426.71 427.01	98.78 21.21	16.03 17.94	410.68 409.07
	S03M30	6/23/2020	426.88	NA	NA	NA
	S03M31	6/23/2020	427.12	84.42	26.55	400.57
	S03M32	6/23/2020	426.99	93.90	20.87	406.12
	S03M33	6/23/2020	427.12	74.39	20.16	406.96
	S03M34	6/22/2020	426.30	99.30	23.77	402.53
	S03M35 S03M36	6/22/2020 6/22/2020	427.11 427.36	68.00 26.10	25.49 17.52	401.62 409.84
	S03M37	6/22/2020	427.48	14.50	DRY	NA
	S03M38	NA	427.27	NA	NA NA	NA NA
	S03M41	6/22/2020	427.63	91.10	23.30	404.33
	S03M42	6/22/2020	427.40	73.48	24.10	403.30
	S03M43	6/22/2020	429.62	97.10	28.83	400.79
	S03M44 S03M45	6/24/2020 6/23/2020	431.53 432.18	97.00 67.90	33.17 33.94	398.36 398.24
Site 3	S03M46	6/23/2020	431.14	107.70	18.91	412.23
Site 5	S03M47	6/23/2020	430.89	96.86	17.81	413.08
	S03M48	6/23/2020	431.05	99.00	22.66	408.39
	S03M49 S03M50	6/23/2020	430.01 430.07	89.20 98.02	16.51 17.84	413.50 412.23
	S03M51	6/23/2020 NA	429.78	NA	NA	NA
	S03M52	6/23/2020	430.01	83.80	26.51	403.50
	S03M53	6/22/2020	429.39	60.52	16.58	412.81
	S03M54	6/23/2020	429.44	92.81	16.71	412.73
	S03M55 S03M56	6/23/2020 6/23/2020	428.58 427.23	NA 100.29	DRY 26.24	NA 400.99
	S03M57	6/23/2020	427.31	99.21	14.22	413.09
	S03M58	6/23/2020	427.45	89.05	14.52	412.93
	S03M60	NA	430.71	NA	NA	NA
	S03M61D	6/22/2020 6/22/2020	427.23 427.38	117.10 35.10	28.20 26.51	399.03 400.87
	S03M61S S03M62D	6/22/2020	427.77	117.15	26.43	401.34
	S03M62S	6/22/2020	427.77	43.28	26.44	401.33
	S03M63D1	6/22/2020	429.72	241.11	20.23	409.49
	S03M63D2	6/22/2020	430.16	332.00	31.63	398.53
	S03M63D3 S03M64D1	6/22/2020 6/23/2020	430.19 427.35	270.00 180.65	25.85 26.32	404.34 401.03
	S03M64D1	6/23/2020	427.44	216.82	30.70	396.74
	S03M64D3	6/23/2020	427.40	322.70	DRY	NA
	S03M65D	6/23/2020	428.42	227.50	30.68	397.74
	S03M66D1	6/23/2020	430.95	187.90	18.72	412.23
	S03M66D2 S03M67D1	6/23/2020 6/22/2020	430.97 427.74	207.90 162.80	19.19 26.68	411.78 401.06
	S03M67D1	6/22/2020	427.55	247.23	26.60	400.95
	S03M68D1	6/22/2020	429.41	181.62	26.61	402.80
	S03M68D2	6/22/2020	429.42	247.74	26.81	402.61
	S03M70 S03M71	6/22/2020 6/22/2020	429.93 432.35	349.93 350.22	19.35 32.70	410.58 399.65
	S03M71 S03M72	6/23/2020	432.35	349.05	26.38	402.06
	S03M73D1	6/23/2020	429.31	188.32	31.29	398.02
	S03M73D2	6/23/2020	429.29	350.01	31.44	397.85
	S03M01	6/22/2020	430.02	58.50	25.58	404.44
	S03M04	6/23/2020	434.69	57.22	31.56 26.45	403.13
	S03M05 S03M08	6/22/2020 6/22/2020	430.60 433.85	112.60 109.10	30.58	404.15 403.27
Site 8	S03M10	6/22/2020	421.85	111.05	23.52	398.33
	S03M11	7/1/2020	423.00	97.00	26.67	396.33
	S03M69D1	6/22/2020	438.32	193.11	37.18	401.14
	S03M69D2	6/22/2020	438.21	227.01	37.11	401.10
Site 9	DD-1	6/22/2020	422.79	55.10	23.54	399.25
	DD-7D	6/22/2020	415.24	132.40	21.53	393.71

Notes: NGVD - National Geodetic Vertical Datum

bgs - below ground surface TOR - Top of Riser NA - Not Available

Table 3-2 Sampling Location Summary – June 2020 Site 3 – Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

			Monitored Interval
Site	Well	Date Sampled	(feet below ground
one.	Identification	Daie Janipica	surface,
			Original Construction)
	S03M02	06/29/20	17 - 77.8
	S03M03	06/29/20	15 - 57.3
	S03M07	06/29/20	83.5 - 105
	S03M13	06/30/20	209.5 - 249.5
	S03M14	06/24/20	17 - 100
	S03M15	06/30/20	209.5 - 249.5
	S03M16	06/23/20	15 - 100
	S03M17	06/24/20	22 - 110
	S03M18	06/24/20	30.5 - 110
	S03M20	06/24/20	15.5 - 100
	S03M21	06/29/20	7 - 100
	S03M22	06/25/20	42 - 100
	S03M41	06/25/20	15 - 100
	S03M44	06/30/20	15 - 100
	S03M45	06/30/20	19 - 100
	S03M46	06/30/20	12 - 100
	S03M48	06/25/20	13 - 100
	S03M49	06/25/20	16 - 100
	S03M50	06/25/20	23 - 100
	S03M51	06/25/20	19 - 100
G: A	S03M52	06/25/20	25 - 100
Site 3	S03M54	06/24/20	45 - 100
	S03M57	06/23/20	13 - 100
	S03M61S*	0.0/0.0/0.0	22 - 35.1
	S03M62S	06/29/20	31 - 43.6
	S03M63D1	06/26/20	200 - 250
	S03M63D2	06/26/20	250 - 270
	S03M63D3	06/25/20	300 - 358
	S03M64D1	06/24/20 06/26/20	165 - 185
	S03M64D2		200 - 220
	S03M64D3** S03M65D	06/29/20	310 - 330 210 - 230
	S03M66D1 S03M66D2	06/30/20 06/30/20	170 - 187 190 - 210
	S03M67D1	06/30/20	145 - 165
	S03M67D1 S03M67D2	07/01/20	230 - 250
	S03M68D1	06/30/20	250 - 250 165 - 185
	S03M68D1	06/30/20	230 - 250
	S03M70	06/30/20	340 - 350
	S03M71	06/29/20	309.5 - 349.5
	S03M72	06/29/20	309.6 - 349.6
	S03M73D1	06/29/20	179 - 189
	S03M73D1 S03M73D2	06/26/20	309.9 - 349.9
Sita 0	S03M01	07/01/20	17 -59.1 175 - 195
Site 8	S03M69D1	06/30/20	
	S03M69D2	06/30/20	210 - 230
Site 9	DD-1	07/01/20	9.8 - 56.5
	DD-7D	07/01/20	108.5 - 135

Notes:
*Lack of sufficient water for sampling
**Well was compromised during sampling event

Table 4-1 Vertical Head Differential Analysis – June 2020 Site 3 – Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

Well Cluster	Mid-Point of Monitored Interval (feet bgs)	Groundwater Elevation (feet NGVD)	Hydraulic Head Difference (feet)	Vertical Head Differential Direction
S03M01/	38.05	404.44	0.29	Downward
S03M05	99.25	404.15	0.23	Downward
S03M02/	47.40	397.79	7.71	Downward
S03M06	119.25	390.08	1.11	Downward
S03M03/	36.15	398.44	0.36	Upward
S03M07	94.25	398.80	0.50	Opwaru
S03M04/	40.00	403.13	0.14	Upward
S03M08	98.25	403.27	0.14	Opwaru
S03M61S/	28.55	400.87	1.84	Downward
S03M61D	111.75	399.03	1.04	Downward
S03M62S/	37.30	401.33	0.01	Not Determinable
S03M62D	111.75	401.34	0.01	Not Determinable
S03M63D1/	225.00	409.49	10.96	Downward
S03M63D2/	260.00	398.53	5.81	Upward
S03M63D3	329.00	404.34	5.61	Opwaru
S03M64D1/	175.00	401.03	4.29	Downward
S03M64D2/	210.00	396.74	NA	Upward
S03M64D3*	320.00	NA	IVA	Opwaru
S03M66D1/	178.50	412.23	0.45	Downward
S03M66D2	200.00	411.78	0.40	Downward
S03M67D1/	155.00	401.06	0.11	Downward
S03M67D2	240.00	400.95	0.11	Downward
S03M68D1/	175.00	402.80	0.19	Downward
S03M68D2	240.00	402.61	0.13	Downward
S03M69D1/	185.00	401.14	0.04	Not Determinable
S03M69D2	220.00	401.10	0.04	Tion Deferminable
S03M73D1/	1/ 184.00 398.02		0.17	Downward
S03M73D2	329.90	397.85	0.17	Downward

Notes:

bgs = below ground surface

NA = Not Available

NGVD = National Geodetic Veritcal Datum

*Well was compromised during sampling event

Differences less than 0.1 feet are too small to reliably determine a head differential direction.

Table 5-1 June 2020 Groundwater Sampling Event Frequency of Detection and Statistical Summary Site 3 – Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

Parameter	COC Target Concentration (MCL)	Frequency of Detection	Number of Exceedances	Minimum Positive Result	Maximum Positive Result	Location of Maximum Result	Average Positive Result	Average Result
Volatile Organics (µg/L)								
1,4-Dichlorobenzene	75	11/46	1	0.97 J	85.1	S03M64D1	18.89	4.52
Benzene	5	15/46	8	0.46 J	384	S03M57	39.22	12.79
Carbon Tetrachloride	5	0/46	0	ND	ND	NA	NA	NA
Chlorobenzene	100	14/46	7	0.73 J	1,450	S03M18	489.42	148.95
cis-1,2-Dichloroethene	70	27/46	3	0.55 J	7,280	S03M50	370.97	217.74
Trichloroethene	5	23/46	8	$0.58~\mathrm{J}$	92.2	S03M63D3	12.91	6.45
Vinyl Chloride	2	15/46	11	1.1	2,570	S03M50	274.86	89.63
PCBs (µg/L)								
Aroclor-1260	0.5	6/46	3	0.23 J	7.50	S03M17	1.59	0.21
Inorganics - Total Metals (µg/L)								
Arsenic	10	32/46	10	0.96 J	41.2	S03M18	10.69	7.44
Iron, Total		42/46	NA	32.0 J	27,100	S03M49	3,360.24	3,068.05
Manganese	314*	36/46	2	1.4 J	684	S03M17	129.77	101.56
Geochemistry Parameters (mg/L)								
Alkalinity, Total		9/9	NA	225	1,190	S03M64D1	433.11	433.11
Ammonia		7/9	NA	0.37	4.4	S03M63D3	1.54	1.20
Chloride		9/9	NA	1.0 J	43.3	S03M50	10.00	10.04
Iron, Dissolved		7/9	NA	79.3 J	15,400	S03M54	3,774.90	2,936.03
Nitrite		ND	NA	ND	ND	NA	NA	NA
Nitrate		1/9	NA	0.13	0.13	S03M64D1	NA	NA
Total Organic Carbon (TOC)		9/9	NA	1.1	41.9	S03M64D1	7.37	7.37
Sulfate		9/9	NA	1.4 J	131	S03M49	48.60	48.60
Sulfide		3/9	NA	0.49 J	1.2 J	S03M50	0.76	0.25
Gases (µg/L)								
Ethane		7/9	NA	0.88	88.8	S03M50	21.48	16.71
Ethene		7/9	NA	0.58	148	S03M50	36.51	28.39
Methane		8/9	NA	2.10	7,520	S03M17	2,935.55	2,609.37
Dechlorinating Bacteria (cells/mL)								
Dehalococcoides (DHC)		9/9	NA	3.45	165,000	S03M50	27,800	27,800
tceA Reductase (TCE)		4/9	NA	0.1 J	3.4	S03M18	1.78	0.78
BAV1 Vinyl Chloride Reductase (BVC)		9/9	NA	0.30 J	14,600	S03M50	1,930	1,930
Vinyl Chloride Reductase (VCR)		8/9	NA	2.40	20,500	S03M50	13,100	1,460

Notes:

* Indicates a Preliminary Remedial Goal (PRG) not MCL
MCL = Maximum Contaminant Level
mg/L = milligrams per liter
µg/L = micrograms per liter
cells/mL = cells per milliliter
NA = Not Applicable

ND = Not Detected

PRG as established in the Site 3 Record of Decision (Navy, 2004)

Average Result = (sum of all concentrations)/(total samples analyzed)

Validation Qualifier:

J = Estimated Concentration

Table 5-2

Summary of Groundwater Sample Analytical Detections - 2020 Site 3 - Ball Road Landfill and Burn Pits

Naval Support Activity, Mechanicsburg, Pennsylvania

								Navai Sup	port Activity,	, Mechanicsbur	g, Pennsylvan	ıa								
Location:		Site 8	Site 3	Site 3	Site 3	Site 3	Site 3	Site 3	Site 3	Site 3	Site 3	Site 3	Site 3	Site 3	Site 3	Site 3	Site 3	Site 3	Site 3	Site 3
Client Sample ID:		S03M01-	S03M02-	S03M03-	S03M07-	S03M13-	S03M14-	S03M15-	S03M16-	S03M17-	S03M17D-	S03M18-	S03M18-	S03M20-	S03M21-	S03M22-	S03M41-	S03M41D-	S03M44-	S03M45-
•	MCL or PRG	070120	062920	062920	062920	063020	062420	063020	062320	062420	062420	062420	062420DUP	062420	062920	062520	062520	062520	063020	063020
Lab Sample ID:		JD8742-58	JD8742-38	JD8742-39	JD8742-37	JD8742-40	JD8742-9	JD8742-44	JD8742-2	JD8742-5	JD8742-6	JD8742-4	JD8742-7	JD8742-11	JD8742-36	JD8742-21	JD8742-18	JD8742-19	JD8742-52	JD8742-41
Date Sampled:	10010011	7/1/2020	6/29/2020	6/29/2020	6/29/2020	6/30/2020	6/24/2020	6/30/2020	6/23/2020	6/24/2020	6/24/2020	6/24/2020	6/24/2020	6/24/2020	6/29/2020	6/25/2020	6/25/2020	6/25/2020	6/30/2020	6/30/2020
Volatile Organic Compounds (Metho	oa 8260C) (µg/L																			
Benzene	5	ND (0.50)	ND (0.50)	8.9	15.3	ND (0.50)	ND (0.50)	1.6	ND (0.50)	7.8	9.8	107	100	ND (0.50)	ND (0.50)	ND (0.50)	24	13	ND (0.50)	ND (0.50)
Carbon tetrachloride	5	ND (1.0)	ND (1.0)	ND (2.0)	ND (2.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (4.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (2.5)	ND (1.0)	ND (1.0)	ND (1.0)
Chlorobenzene	100	ND (1.0)	ND (1.0)	1020	961	ND (1.0)	1.6	28	ND (1.0)	935	1120	1450	1370	ND (1.0)	ND (1.0)	ND (1.0)	612	641	11.7	ND (1.0)
1,4-Dichlorobenzene	75	ND (1.0)	ND (1.0)	6	9.3	ND (1.0)	1.1	0.97 J	ND (1.0)	9.4	11.7	5.4	5.4	ND (1.0)	ND (1.0)	ND (1.0)	9.2	5.6	1.9	ND (1.0)
cis-1,2-Dichloroethene	70	ND (1.0)	ND (1.0)	5.8	ND (2.0)	0.55 J	0.72 J	1	2.1	43.7	21.6	224	208	ND (1.0)	ND (1.0)	4.7	2220	546	60.2	2.5
Trichloroethene	5	ND (1.0)	ND (1.0)	ND (2.0)	ND (2.0)	ND (1.0)	ND (1.0)	ND (1.0)	1.2	ND (4.0)	ND (5.0)	50.3	46	ND (1.0)	ND (1.0)	1.2	1.7 J	2.1	10	0.58 J
1,2,4-Trimethylbenzene ⁽¹⁾	15 ⁽²⁾	ND (2.0)	ND (2.0)	ND (4.0)	ND (4.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (8.0)	ND (10)	ND (10)	ND (10)	ND (2.0)	ND (2.0)	ND (2.0)	ND (5.0)	ND (2.0)	ND (2.0)	ND (2.0)
Vinyl chloride	2	ND (1.0)	ND (1.0)	1.7 J	ND (2.0)	ND (1.0)	ND (1.0)	1.7	ND (1.0)	49	45.3	11.5	11.3	ND (1.0)	ND (1.0)	ND (1.0)	1430	377	ND (1.0)	ND (1.0)
Polychlorinated Biphenyls (Method 8	082A) (μg/L)																			
Aroclor 1260	0.5	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33) UJ	7.5	9.3	ND (0.33)	ND (0.33)	0.32	J ND (0.33)	ND (0.33)	0.4	0.73	ND (0.33)	ND (0.33)
Metals (Method 6010) (µg/L)														•						
Arsenic	10	ND (3.0)	ND (3.0)	11.8	19.8	7.1	20.2	12.3	2.1 J	4.5	5.9	41.2	41.3	ND (3.0)	ND (3.0)	ND (3.0)	8.1	9.1	1.1 J	3.5
Iron		32 J	478	6330	5280	849	1170	308	4730	5660/3750	5950	3920/3580	3930	5470	608	5610	5670/3310	5940	765	73.7 J
Manganese	314*	2.4 J	13.9 J	231	192	6.9 J	123	28.5	297	684	662	194	194	55.9	21.3	52	215	214	113	16.7
Gases (Method RSK-175) (µg/L)																				
Methane		-	-	-	-	-	-	-	-	7520	-	2560	-	-	-	-	3070		-	-
Ethane		-	-	-	-	-	-	-	-	12.3	-	11.8	-	-	-	-	12.8		-	-
Ethene		-	-	-	-	-	-	-	-	16.5	-	0.59	-	-	-	-	74.4		-	-
Geochemistry Parameters (mg/L)																				
Alkalinity, Total as CaCO3		-	-	-	-	-	-	-	-	290	-	288	-	-	-	-	225		-	-
Chloride		-	-		-	-		-	-	8.6	-	5.7	-	-	-		2.8		- +	-
Nitrogen, Ammonia		- +	-		-	-			-	1.1	-	0.68	-	-	-		0.37	.	- +	
Nitrogen, Nitrate		-	-	-	-	-	-	-	-	ND (0.11) ND (0.10)	-	ND (0.11) ND (0.10)	-	-	-	-	ND (0.11) ND (0.10)	-	-	
Nitrogen, Nitrate + Nitrite Sulfate		-	-	-	-	-	-		-	53.9		1.4 J	-	-	-	-	10.6	-	-	
Sulfide		-		 		1 -	 	 	-	ND (2.0)	-	ND (2.0)			 	-	ND (2.0)	 	 	- -
Total Organic Carbon		-	-		-	-		- 1	-	3.8	-	2.3		-	-		2.6		- 1	 -
Dechlorinating Bacteria (Method qPC	CR) (cells/mL)	u .			<u> </u>											<u> </u>	<u> </u>	<u>.</u>	<u> </u>	
Dehalococcoides (DHC)		-	-	-	-	-	-	- 1	-	6.10E+04		2.16E+04	-	-	-	-	2.19E+03		-	-
tceA Reductase (TCE)		-	-	-	-	-	-	-	-	2.20E+00		3.40E+00	-	-	-	-	1.40E+00		-	-
BAV1 Vinyl Chloride Reductase (BVC)		-	-	-	-	-	-	-	-	2.20E+03		3.92E+02	-	-	-	-	1.71E+02		-	-
Vinyl Chloride Reductase (VCR)		-	-	-	-		-	-	-	1.19E+04		7.55E+02	-	-	-	-	3.41E+02		-	-

Notes:

Lab - SGS Accutest

Bold concentrations indicate a positive detection above the laboratory reporting limit.

Bold, grey shaded concentrations indicate an exceedance of the Federal MCL (USEPA, 2009) or PRG, as established in Site 3 ROD (Navy, 2004).

*Indicates a PRG not MCL

(1) - 1,2,4-Trimethylbenzene is not a COC as defined in the ROD (Navy, 2004)

(2) - Indicates a MSC

MCL - Maximum Contaminant Level

MSC - Medium Specific Concentration as identified in the Pennsylvania Statewide Health Standard

PRG - Preliminary Remediation Goal

ND - Not Detected (Value inside parentheses indicates associated Method Reporting Limit)

Dash indicates constituent was not analyzed

ID - Identification

 $\mbox{mg/L}$ - $\mbox{milligrams}$ per liter

 $\mu g/L$ - micrograms per liter

cells/mL - cells per milliliter

J - Estimated concentration

UJ - Not detected, associated Method Reporting Limit is an estimation

Results presented as Result/Result indicate the detections for Total Iron and Dissolved Iron, respectively

 $Monitoring \ well \ S03M64D3 \ was \ found \ to \ be \ compromised \ during \ the \ sampling \ event \ and \ was \ not \ sampled$

Monitoring well S03M61S did not contain a sufficient volume of water and was not sampled

Table 5-2 Summary of Groundwater Sample Analytical Detections - 2020 Site 3 - Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

									ort Activity, me										
Location:		Site 3	Site 3	Site 3	Site 3	Site 3	Site 3	Site 3	Site 3	Site 3	Off-Site	Site 3	Site 3	Site 3	Site 3	Site 3	Site 3	Site 3	Site 3
Client Sample ID:		S03M46-	S03M48-062520	S03M49-	S03M50-	S03M50D-	S03M51-	S03M52-	S03M54-	S03M57-	S03M62S-	S03M63D1-	S03M63D2-	S03M63D3-	S03M64D1-	S03M64D1D-	S03M64D2-	S03M65D-	S03M66D1-
	MCL or PRG	063020		062520	062520	062520	062520	062520	062420	062320	062920	062620	062620	062520	062420	062420	062620	062620	063020
Lab Sample ID:		JD8742-51	JD8742-20	JD8742-22		JD8742-16			JD8742-8	JD8742-1	JD8742-35	JD8742-26	JD8742-25	JD8742-17	JD8742-12	JD8742-13	JD8742-27	JD8742-28	JD8742-42
Date Sampled:		6/30/2020	6/25/2020	6/25/2020	6/25/2020	6/25/2020	6/25/2020	6/25/2020	6/24/2020	6/23/2020	6/29/2020	6/26/2020	6/26/2020	6/25/2020	6/24/2020	6/24/2020	6/26/2020	6/26/2020	6/30/2020
Volatile Organic Compounds (Metho	od 8260C) (µg/L)																	
Benzene	5	ND (0.50)	ND (0.50)	ND (0.50)	12.3 J	12.1 J	ND (0.50)	ND (0.50)	ND (0.50)	384	ND (0.50)	4.4	4.1	0.95	15.4	15.2	1.4 J	ND (0.50) U	J ND (0.50)
Carbon tetrachloride	5	ND (1.0)	ND (1.0)	ND (1.0)	ND (25)	ND (25)	ND (1.0)	ND (1.0)	ND (1.0)	ND (5.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0) U.	ND (1.0) U	IJ ND (1.0)
Chlorobenzene	100	ND (1.0)	ND (1.0)	ND (1.0)	89.2	87.1	ND (1.0)	ND (1.0)	1.4	1150	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	561	550	30.3 J	ND (1.0) U	J ND (1.0)
1,4-Dichlorobenzene	75	ND (1.0)	ND (1.0)	ND (1.0)	20.7 J	20.4 J	ND (1.0)	ND (1.0)	ND (1.0)	58.8	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	85.1	85.4	ND (1.0) U	ND (1.0) U	J ND (1.0)
cis-1,2-Dichloroethene	70	ND (1.0)	3.1	15.9	7280	7070	2.4	ND (1.0)	2.2	ND (5.0)	ND (1.0)	3.6	22.7	34.9	11.3	11.3	7.9 J	ND (1.0) U	J ND (1.0)
Trichloroethene	5	1.8	0.97 J	1.1	ND (25)	ND (25)	1.3	ND (1.0)	ND (1.0)	ND (5.0)	ND (1.0)	13.3	72.6	92.2	7.5	7.7	1.7 J	ND (1.0) U	J 0.98 J
1,2,4-Trimethylbenzene ⁽¹⁾	15 ⁽²⁾	ND (2.0)	ND (2.0)	ND (2.0)	ND (50)	ND (50)	ND (2.0)	ND (2.0)	ND (2.0)	ND (10)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	5.9	5.9	ND (2.0) U	ND (2.0) U	J ND (2.0)
Vinyl chloride	2	ND (1.0)	ND (1.0)	ND (1.0)	2570	2600	ND (1.0)	ND (1.0)	3.7	ND (5.0)	ND (1.0)	1.1	5.1	6	16.2	16.5	3 J	ND (1.0) U	J ND (1.0)
Polychlorinated Biphenyls (Method 8	082A) (μg/L)																		
Aroclor 1260	0.5	ND (0.33)	ND (0.33)	0.55	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	0.59	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	0.23 J	ND (0.33)	ND (0.33)
Metals (Method 6010) (µg/L)																			
Arsenic	10	ND (3.0)	3	9.7	2.6 J	2.7 J	3	ND (3.0)	3.2	0.96 J	ND (3.0)	ND (3.0)	1.8 J	J 2.8 J	8.8	8	28.8	17.3	32.6
Iron		34.9	J 1480/ND (100)	27100/124	14000/181	14000	26500	271	15600/15400	907	ND (100)	92	J 79 J	816/ ND(100)	124/79.3 J	120	90.1 J	120	ND (100)
Manganese	314*	1.4	J 242	274	127	122	302	93.3	643	153	ND (15)	2	J ND (15)	15.2	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)
Gases (Method RSK-175) (µg/L)																			
Methane		-	2.1	ND (0.11)	5220	-	-	-	358	-	-	-	-	24.3	4730	-	-	-	-
Ethane		-	ND (0.23)	ND (0.23)	88.8	-	-	-	1.4	-	-	-	-	0.88	22.4	-	-	-	-
Ethene		-	ND (0.31)	ND (0.31)	148	-	-	-	0.58	-	-	-	-	4.7	10.8	-	-	-	-
Geochemistry Parameters (mg/L)																			
Alkalinity, Total as CaCO3		-	311	380	515	-	-	-	334	-	-	-	-	365	1190	-	-	-	-
Chloride		-	1.3 J	1.0 J	43.3	-	-	-	1.8 J	-	-	-	-	9.4	16.5	-	-	-	-
Nitrogen, Ammonia		-	ND (0.20)	ND (0.20)	0.85	-	-	-	0.81	-	-	-	-	4.4	2.6	-	-	-	-
Nitrogen, Nitrate		- 1	ND (0.11)	ND (0.11)	ND (0.11)	-	-	-	ND (0.11)	-	-	-		ND (0.11)	0.13	-	-	-	-
Nitrogen, Nitrate + Nitrite		-	ND (0.10)	0.092 J	ND (0.10)	-	-	-	ND (0.10)	-	-	-	-	ND (0.10)	0.13	-	-	-	-
Sulfate			86.5	131	73.9		-		12.6		-	-	-	37.7	29.8	-		-	
Sulfide			ND (2.0)	ND (2.0)	1.2 J 4.7		-		ND (2.0)		-	-	-	0.49 J 6.2	0.6 J	-	-	-	-
Total Organic Carbon	2D) (a alla (mat)	-	1.1	4	4.7	-	-	-	1.8	-	-	-	-	0.2	41.9	-	-	-	
Dechlorinating Bacteria (Method qPC	.k) (ceils/mL)			T T		T .		, , , , , , , , , , , , , , , , , , , 	T T	, ,						T			
Dehalococcoides (DHC)		-	3.32E+01	5.71E+02	1.65E+05	-	-	-	5.65E+01	-	-	-	-	3.45E+00	1.70E+01	1.75E+01		-	
tceA Reductase (TCE)		-	ND (0.5)	ND (0.5)	ND (0.5)	-	-	-	ND (0.5)	-	-	-	-	ND (1.20)	1.00E-01 J	2.00E-01 J	-	-	
BAV1 Vinyl Chloride Reductase (BVC)		-	3.00E-01 J	4.88E+01	1.46E+04	-	-	-	1.50E+00	-	-	-	-	3.00E-01 J	9.00E-01	7.00E-01	-	-	-
Vinyl Chloride Reductase (VCR)		-	1.03E+01	1.13E+02	2.05E+04	-	-	-	7.60E+00	-	-	-	-	ND (1.20)	2.40E+00	1.90E+00	-	-	1 -

Table 5-2 Summary of Groundwater Sample Analytical Detections - 2020 Site 3 - Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

							Na	ivai Support Ad	ctivity, mechai	nesburg, Penn	syivania				
Location:		Site 3	Site 3	Site 3	Off-Site	Off-Site	Site 8	Site 8	Site 3	Site 3	Site 3	Site 3	Site 3	Site 9	Site 9
Client Sample ID:		S03M66D2-	S03M67D1-	S03M67D2-	S03M68D1-	S03M68D2-	S03M69D1-	S03M69D2-	S03M70-	S03M71-	S03M72-	S03M73D1-	S03M73D2-	DD-1-	DD-7D-
•	MCL or PRG	063020	070120	070120	063020	063020	063020	063020	062920	062920	062920	062620	062620	070120	070120
Lab Sample ID:		JD8742-43	JD8742-54	JD8742-55	JD8742-47	JD8742-48	JD8742-49	JD8742-50	JD8742-34	JD8742-33	JD8742-32	JD8742-29	JD8742-30	JD8742-53	JD8742-57
Date Sampled:		6/30/2020	7/1/2020	7/1/2020	6/30/2020	6/30/2020	6/30/2020	6/30/2020	6/29/2020	6/29/2020	6/29/2020	6/26/2020	6/26/2020	7/1/2020	7/1/2020
Volatile Organic Compounds (Meth	od 8260C) (µg/L	•													
Benzene	5	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	0.46	ND (0.50) UJ	0.82	ND (0.50)	ND (0.50)
Carbon tetrachloride	5	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0) UJ	ND (1.0)	ND (1.0)	ND (1.0)
Chlorobenzene	100	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	0.73 J	ND (1.0)	ND (1.0)	ND (1.0)
1,4-Dichlorobenzene	75	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0) UJ	ND (1.0)	ND (1.0)	ND (1.0)
cis-1,2-Dichloroethene	70	ND (1.0)	0.58 J	1.1	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	3.4	0.95 J	0.66	60.3 J	ND (1.0)	ND (1.0)	ND (1.0)
Trichloroethene	5	6.3	ND (1.0)	1.2	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	1.4 J	1.7	24.4 J	ND (1.0)	0.99 J	2.5
1,2,4-Trimethylbenzene ⁽¹⁾	15 ⁽²⁾	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0) UJ	ND (2.0)	ND (2.0)	ND (2.0)
Vinyl chloride	2	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	9.1	1.4	ND (1.0)	13.5 J	ND (1.0)	ND (1.0)	ND (1.0)
Polychlorinated Biphenyls (Method 8	8082A) (µg/L)														
Aroclor 1260	0.5	ND (0.33)	ND (0.33)	ND (0.33) UJ	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)
Metals (Method 6010) (µg/L)	•			•							<u> </u>		<u> </u>		
Arsenic	10	26.9	1.2 J	ND (3.0)	ND (3.0)	3.2	1.9 J	9.5	40.6	1.4 J	9.1	2.2 J	ND (3.0)	ND (3.0)	ND (3.0)
Iron		62.3 J	247	38.2 J	ND (100)	1140	167	333	3850	343	54.1	342	327	58.9 J	ND (100)
Manganese	314*	ND (15)	17.9	6.1 J	ND (15)	60.4	4.4 J	4.4 J	105	7.7 J	ND (15)	266	97.9	2.6 J	ND (15)
Gases (Method RSK-175) (µg/L)															
Methane		-	-	-	-	-	-	-	-	-	-	-	-	-	- []
Ethane		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethene		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Geochemistry Parameters (mg/L)															
Alkalinity, Total as CaCO3		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloride		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrogen, Ammonia		-	-	-	-		-	-	-	-		-	-	-	-
Nitrogen, Nitrate				-	-			-	-	-				-	
Nitrogen, Nitrate + Nitrite		-			-		- +	-	-	-				-	
Sulfate		-	-	-	-		-	-	-	-	-		-	-	
Sulfide		-	-	-	-		-	-	-	-	-	-	-	-	
Total Organic Carbon	CD) (# . (1)	-	-	-	-	-	-	-	-	-	-	-	-	-	
Dechlorinating Bacteria (Method qP	CK) (Cells/mL)	ı ı	1	1		1	1		1	1		1	1	1	
Dehalococcoides (DHC)	1	-		-	-		-	-	-	-	-	-	-	-	1 - 1
tceA Reductase (TCE)		-		-	-		-	-	-	-	-		-	-	
BAV1 Vinyl Chloride Reductase (BVC)		-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
Vinvl Chloride Reductase (VCR)	I	-	-	-	-	-	-	-	I - I	-	-	-	-	-	1 - 1 7

Table 5-3 Comparison of 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, and 2020 COC Exceedances Site 3 – Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

Analyte	MCL or PRG (µg/L)	Well ID	2011 Concentration	2012 Concentration	2013 Concentration	2014 Concentration	2015 Concentration
Volatile Organics (µg	/L)						
1,4-Dichlorobenzene	75	S03M57	458	531	869 J	348	153
•		S03M64D1 S03M03	NA NE	NA NE	NA 5.70	NA 9.00 J	NA 14.7 J
		S03M03 S03M07	25.3 J	18.10	12.9	16.4	15.1 J
		S03M15	6.80	NE	NE	NE	NE
		S03M17 S03M18	NE 58	5.00 115	12.7 28.8	18.6 J 115	8.30 J 149 J
Benzene	5	S03M41	NE	NE	8.50 J	8.40	11.4
		S03M50	8.90	NE	13.9	NE	38.9
		S03M57	317	503	632	611	518 J
		S03M64D1 S03M64D2	25.3 J 14.5 J	27.9 13.1	22.8 11.1	22.9 8.70	18.5 J 8.80 J
Carbon	5	S03M20	5.60	5.40	NE	NE	ND
Tetrachloride	υ	S03M72	NE	677	142	NE	ND
		S03M03 S03M07	NE 2,300 J	NE 1,280	1,060 1,050	1,310 1,620 J	1,400 J 1,280 J
		S03M14	NE NE	120	NE	NE	NE
		S03M15	101	NE	NE	NE	NE
Chlorobenzene	100	S03M17 S03M18	257 2,810	378 3,770	1,040 1,510	1,490 3,310	744 J 3.410 J
Chiorobenzene	100	S03M41	330	232	586 J	684	3,410 J 775
		S03M50	NE	NE	NE	ND	103
		S03M57	4,630	5,910	8,760 J	3,880 J	2,710 J
		S03M64D1 S03M64D2	1,100 717 J	1,090 436	789 J 361	813 252.00	517 J 285 J
		S03M64D2 S03M15	323	436 NE	NE	252.00 NE	285 J 257 J
		S03M17	NE	83.9	253	102	232 J
		S03M18	120	NE 1 000	251	406	415 J
		S03M41 S03M44	262 NE	1,020 NE	2,990 J 185	691 NE	808 76.1
		S03M44 S03M48	108	NE NE	NE	NE NE	76.1 NE
cis-1,2-	70	S03M49	430	306	203	157	1,720
Dichloroethene	70	S03M50	25,500	11,500	36,300	65,000	70,200
		S03M63D2 S03M63D3	182 L 156	125 129	92.6 78.0	82.2 81.5	76.9 J 75.7
		S03M64D1	137 J	105	70.3	NE	NE
		S03M64D3	NE	75.1	NE	NE	NE
		S03M70	NE	NE	NE	145	NE
		S03M73D1	NE 7.13	88.8	NE	174 J	NE
		S03M01 S03M03	7.10 NE	NE NE	NE NE	NE 7.50	NE NE
		S03M17	15.6	NE	NE	NE	NE
		S03M18	5.10	38.8	6.60	53.2	16.4 J
		S03M41	159	512	1,330 J	287	482
		S03M44 S03M45	13.7 13.2 J	8.30 NE	32.7 NE	NE NE	10.2 NE
		S03M46	51.2	23.2	9.10	6.00	6.20
		S03M48	166	14.6	26.5	20.0	NE
		S03M49	27.1	38.9	11.0	7.20	51.9
		S03M50 S03M62S	NE 10.1	5.40 8.70	NE NE	NE NE	9.00 NE
		S03M63D1	162 J	109 J	67.9 J	46.7	24.5 J
Trichloroethene	5	S03M63D2	609 L	395	373 J	271 J	261 J
THEMOTOCOME		S03M63D3 S03M64D1	714 57.2 J	366 59.2	313 36.0	304 30.3 J	198 17.3 J
		S03M64D1	20.2 J	14.2	11.8	7.50	9.10 J
		S03M64D3	32.1	278	55.8	97.7 J	158
		S03M66D1	11.0	6.10	NE	NE	NE
		S03M66D2 S03M67D1	20.3 8.00	25.2 6.90	NE NE	14.7 NE	11.2 NE
		S03M67D1 S03M67D2	8.30	11.5	NE NE	NE NE	NE NE
		S03M69D2	NE	NE	7.70	NE	NE
		S03M70	NE	58.5	NE 7.40	NE	NE
		S03M71 S03M73D1	NE NE	5.50 37.8	7.40 NE	6.90 NE	NE NE
		S03M73D1 S03M73D2	NE NE	19.3	NE NE	NE NE	NE NE
		DD-7D	10.0	5.40	9.10 J	7.10	5.30
		S03M03	NE NE	NE	3.50	7.50	2.10
		S03M07 S03M14	NE NE	2.90 NE	3.20 2.30 J	NE NE	NE NE
		S03M15	252	2.20	8.30	161 J	192 J
		S03M16	NE	6.40	5.10	NE	2.80
		S03M17	13.0	16.6	172	268	130 J
		S03M18 S03M41	75.3 50.2	25.4 97.0	39.2 98.7 J	20.1 69.0	31.7 J 70.2
		S03M44	NE	NE	18.6	NE	2.20
		S03M45	NE	NE	4.10	NE	NE
		S03M48 S03M49	2.30 NA	ND NA	NE NA	NE NA	NE NA
Vinyl Chloride	2	S03M49 S03M50	2,340	547	637	3,100	2,660
		S03M54	28.9	15.7	NE	14.60	9.30
		S03M63D1	15.9 J	9.20 J	6.50 J	3.90	2.80 J
		S03M63D2 S03M63D3	28.8 L 30.7	13.5 14.7	12.80 J 11.30	8.20 J 9.80	9.20 J 9.90
		S03M64D1	75.5 J	57.3	55.40	9.80 57.4	9.90 46.0 J
		S03M64D1	24.1 J	13.9	14.10	10.2	13.7 J
		S03M64D3	6.30	26.5	13.80	15.2 J	22.8
		S03M70	NA NE	NA 14.5	NA	NA 0.70	NA 0.00
		S03M71 S03M73D1	NE NE	14.7 55.0	11.50 NE	9.50 84.6 J	8.30 18.3
		S03M73D1 S03M73D2	NE NE	24.5	20.50	NE	NE

Table 5-3 Comparison of 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, and 2020 COC Exceedances Site 3 – Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

Analyte	MCL or PRG (µg/L)	Well ID	2016 Concentration	2017 Concentration	2018 Concentration	2019 Concentration	2020 Concentration
Volatile Organics (µg	/L)						
1,4-Dichlorobenzene	75	S03M57	168	NE	114	NE	NE
1,4-Dicinorouchizene		S03M64D1 S03M03	NA 9.70	134 9.60	NE 8.60	NE 6.20	85.1 8.9
		S03M07	15.5	16.2	12.0	13.4	15.3
		S03M15	NE	NE	NE 10.5	NE	NE 5.0
		S03M17 S03M18	8.30 14.6	17.1 144	10.7 82.1	10.8	7.8 107
Benzene	5	S03M41	5.40 J	10.6	8.30	6.6	24
		S03M50	40.4	18.9	13.9	17.8	12.3 J
		S03M57 S03M64D1	515 26.2	191 14.8	585 13.7	228 13.8	384 15.4
		S03M64D2	8.10	5.00	NE	NE	NE
Carbon Tetrachloride	5	S03M20 S03M72	ND ND	ND ND	ND ND	ND ND	ND ND
Tetracmoride		S03M03	1,280	863	1,060	824	1,020
		S03M07	1,850	986	999	1,080	961
		S03M14 S03M15	NE	NE	NE NE	NE NE	NE NE
		S03M15 S03M17	NE 872	NE 1,580	932	NE 899	935
Chlorobenzene	100	S03M18	1,170	3,030	2,530	2,500	1,450
		S03M41	909	1,170	976	504	612
		S03M50 S03M57	128 2,400	188 907	148 2,020	143 625	NE 1,150
		S03M64D1	1,550	780	458	513	561
		S03M64D2	275	149	NE	NE	NE
		S03M15 S03M17	122 199	NE NE	NE ND	NE ND	NE NE
		S03M17 S03M18	NE	NE 227	120	198	NE 224
		S03M41	432	299	527	144	2,220
		S03M44	NE	NE	NE NE	NE NE	NE NE
cis-1,2-		S03M48 S03M49	NE 1,690	NE 111	NE 93.7	NE NE	NE NE
Dichloroethene	70	S03M50	63,600	NE	2,240	7,300	7,280
		S03M63D2	78.2	NE	NE	NE	NE
		S03M63D3 S03M64D1	NE NE	NE NE	NE NE	NE NE	NE NE
		S03M64D1 S03M64D3	143	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾
		S03M70	NE	NE	NE	NE	NE
		S03M73D1	70.5	79.5	NE	129	NE
	5	S03M01	NE NE	ND NE	ND ND	ND ND	ND ND
		S03M03 S03M17	NE NE	ND ND	ND ND	ND ND	ND ND
		S03M18	7.60 J	23.8	ND	13.6 J	50.3
		S03M41	65.4	22.1	24.3	NE	NE
		S03M44 S03M45	10.0 NE	NE ND	NE NE	NE NE	10 NE
		S03M46	NE	NE	NE	NE	NE
		S03M48	NE	NE	NE	NE	NE
		S03M49 S03M50	60.7 NE	5.4 ND	NE ND	NE ND	NE ND
		S03M62S	NE NE	NE NE	NE NE	NE NE	ND
		S03M63D1	20.2	18.0	11.8	12.3	13.3
Trichloroethene		S03M63D2 S03M63D3	237	89.9	75.0	62.5 87.4	72.6 92.2
		S03M64D1	177 33.9	114 14.1	138 10.2	8.4	7.5
		S03M64D2	11.2	8.8	5.30	NE	NE
		S03M64D3	160	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾
		S03M66D1 S03M66D2	NE 11.4	NE 8.2	NE 5.70	NE 5.70	NE 6.3
		S03M67D1	NE	NE	ND	ND	ND
		S03M67D2	NE	NE	NE	NE	NE
		S03M69D2 S03M70	NE NE	ND ND	ND NE	ND ND	ND ND
		S03M70 S03M71	5.40	ND NE	NE NE	NE NE	NE NE
		S03M73D1	37.4	22.1	NE	40.3	24.4 J
		S03M73D2	NE 6 80	ND	ND NE	NE NE	ND NE
Vinyl Chloride	2	DD-7D S03M03	6.80 NE	6.20 NE	NE ND	NE ND	NE NE
		S03M07	NE	ND	ND	ND	ND
		S03M14	NE	NE	ND	NE	ND
		S03M15 S03M16	178 NE	NE 2.00	2.50 ND	NE ND	NE ND
		S03M17	121	115	ND	6.2	49
		S03M18	3.70 J	24.2	24.6	26.4	11.5
		S03M41 S03M44	34.9 2.00	341 ND	413 ND	238 ND	1,430 ND
		S03M44 S03M45	2.00 NE	ND ND	ND ND	ND ND	ND ND
		S03M48	NE	NE	7.00	6.90	ND
		S03M49 S03M50	NA 2 200	115	115	26.4	ND 2.570
		S03M50 S03M54	2,390 5.70	5.30 3.70	782 2.90	4,830 4.10	2,570 3.7
		S03M63D1	NE	NE	NE	NE	NE
		S03M63D2	10.2	5.5	5.40	6.30	5.1
		S03M63D3 S03M64D1	8.90 53.5	7.40 16.6	6.80 23.6	6.50 21.4	6 16.2
		S03M64D1 S03M64D2	13.7 J	16.6	9.30	8.2	16.2 3 J
		S03M64D3	53.5	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾
		S03M70	NA	51.1	27.8	37.6	9.1
		S03M71 S03M73D1	8.70	7.80	7.50	5.40	NE 13.5. I
		S03M73D1	34.8	26.6 ND	21.3 NE	44.8 NE	13.5 J ND

Table 5-3 Comparison of 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, and 2020 COC Exceedances Site 3 – Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

Analyte	MCL or PRG (µg/L)	Well ID	2011 Concentration	2012 Concentration	2013 Concentration	2014 Concentration	2015 Concentration
PCBs (µg/L)	(1 3) I						
· u· J· -/		S03M03	ND	ND	ND	NE	1.80
Aroclor-1260		S03M16	ND	ND	ND	ND	1.20
		S03M17	0.77 J	8.50	8.30 J	7.10 J	56.5
		S03M18	18.0	ND	15.7 J	17.1 J	3.10
	0.5	S03M41	NE	0.85 J	22.8	1.40 J	0.73
	0.5	S03M49	NE	NE	NE	NE	NE
		S03M57	43.5	10.10 J	17.6 J	17.3 J	17.1 J
		S03M64D1	NE	0.78 J	2.30 J	1.00 J	2.30
		S03M64D2	NE	NE	13.0 J	2.20 J	31.5
		S03M64D3	NE	NE	4.20 J	1.90 J	ND
Inorganics - Total	Metals (µg/L	•			(2)		
		S03M03	NE	NA	NA ⁽¹⁾	13.0	13.0
		S03M07	NE	NA	NA ⁽¹⁾	24.0	20.0
		S03M14	NE	NA	NA ⁽¹⁾	26.0	25.0
		S03M15	NE	NA	NA ⁽¹⁾	16.0	16.0 J
		S03M17	NA	NA	NA	NA	NA
Arsenic		S03M18	NE	NA	NA ⁽¹⁾	17.0	20.0
		S03M41	NA	NA	NA	NA	NA
		S03M45	NA	NA	NA	NA	NA
		S03M48	NA	NA	NA	NA	NA
		S03M63D2	NE	NA	NA ⁽¹⁾	11.0	NE
	10	S03M63D3	NE	NA	NA ⁽¹⁾	11.0	14.0
		S03M64D1	NE	NA	NA ⁽¹⁾	46.0	42.0
		S03M64D2	NE	NA	NA ⁽¹⁾	57.0	60.0
		S03M64D3	NE	NA	NA ⁽¹⁾	32.0	10.0
		S03M65D	NE	NA	$NA^{(1)}$	16.0	20.0
		S03M66D1	NE	NA	NA ⁽¹⁾	29.0	33.0 J
		S03M66D2	15.0	NA	NA ⁽¹⁾	27.0	29.0 J
		S03M69D2	NA	NA	NA	NA	NA
		S03M70	NA	NE	NA ⁽¹⁾	NE	18.0
		S03M71	NA	NA	NA ⁽¹⁾	NE	13.0
		S03M72	NA	NA	NA ⁽¹⁾	31.0	20.0
Manganese		S03M01	NA	NA	NA	NA	NA
		S03M03	NE	NA	NA ⁽¹⁾	320	NE
		S03M14	NA	NA	NA	NA	NA
		S03M16	NA	NA	NA	NA	NA
		S03M17	510	NA	NA ⁽¹⁾	NE	NE
		S03M18	NE	NA	NA ⁽¹⁾	800	630
		S03M41	NE	NA	NA ⁽¹⁾	340	320
		S03M44	NE	NA	NA ⁽¹⁾	320	430
	314*	S03M45	NA	NA	NA	NA	NA
		S03M48	650	NA	NA ⁽¹⁾	NE	1,500
		S03M49	720	NA	NA ⁽¹⁾	NE	NE
		S03M50	500	NA	NA ⁽¹⁾	NE	NE
		S03M51	NA	170	NA ⁽¹⁾	NE	NE
		S03M52	NA	NA	NA ⁽¹⁾	4,500	NE
		S03M54	1,300	NA	NA ⁽¹⁾	1,100	1,400
		S03M64D3	NE	NA	NA ⁽¹⁾	690	NE
		S03M73D1	NA	NA	NA	NA	NA

Table 5-3 Comparison of 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, and 2020 COC Exceedances

Site 3 – Ball Road Landfill and Burn Pits

Naval Support Activity, Mechanicsburg, Pennsylvania

Analyte	MCL or PRG (µg/L)	Well ID	2016 Concentration	2017 Concentration	2018 Concentration	2019 Concentration	2020 Concentration
PCBs (μg/L)	(F-9/ -/						
1 CD3 (μg/L)		S03M03	NE	0.96	0.69	0.84	ND
		S03M16	NE NE	0.54 J	ND	ND	ND
		S03M17	9.10	6.60	4.40	3.10	7.5
		S03M18	NE	4.40	NE	0.76	ND
		S03M41	NE	NE	ND	NE	NE
Aroclor-1260	0.5	S03M49	NE	NE	NE	NE	0.55
		S03M57	4.70	47.4 J	9.70	2.20	0.59
		S03M64D1	NE	NE	ND	NE	ND
		S03M64D2	2.40	1.50	ND	0.62	NE
		S03M64D3	ND	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾
Inorganics - Total M	letals (µg/L)					
-		S03M03	11.0	30.5	21.0	19.2	11.8
		S03M07	19.0	28.3	19.1	23.8	19.8
		S03M14	19.0	54.0	50.9	63.0	20.2
		S03M15	15.0	18.9	17.3	16.8	12.3
		S03M17	NA	NA	NA	33.2	NE
		S03M18	13.0	47.8	64.8	47.9	41.2
		S03M41	NA	17.2	14.6	NE	NE
		S03M45	NA	309	NE	NE	NE
	10	S03M48	NA NA	11.5	ND	NE	NE
		S03M63D2	NE	NE	ND	NE	NE
Arsenic		S03M63D2	17.0	NE	ND	NE	NE
Arsenic		S03M64D1	39.0	16.4	15.3	12.5	NE NE
		S03M64D1	58.0	27.2	27.1	28.9	28.8
		S03M64D3	NE	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	
							NA(2)
		S03M65D	13.0 30.0	11.5 29.5	12.8 29.0	11.5 31.2	17.3 32.6
		S03M66D1 S03M66D2	29.0	26.5	25.6	26.6	26.9
		S03M69D2	NA	NA		NE	NE
		S03M70	18.0		10.6	22.0	
		S03M70 S03M71	12.0	20.4	23.1 13.3	NE	40.6 NE
		S03M72	13.0	11.0	NE	10.7	NE
		S03M01	NA NE	454	ND	ND	NE
		S03M03 S03M14	NE	393	NE	NE	NE
		S03M14 S03M16	NA NA	484 411	NE NE	317 NE	NE
		S03M17	NE NE	NE	785	652	NE 684
		S03M17 S03M18					
			NE NE	NE NE	NE NE	354 NE	NE NE
		S03M41					
M	07.44	S03M44	NE	1,610	2,040	NE	NE
Manganese	314*	S03M45	NA 1 200	2,130	NE	NE	NE
		S03M48	1,200	696	662	605	NE NE
		S03M49	NE	1,010	684	NE	NE
		S03M50	NE	405	NE	NE	NE
		S03M51	NE	NE	NE	NE	NE
		S03M52	770	388	NE Tag	NE	NE
		S03M54	1,200	1,510	768	488	643
		S03M64D3	NE	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾
		S03M73D1	NA	351	376	366	NE

Notes:

Red shaded cells indicate concentration increases between the previous and current years

* Indicates a PRG not MCL

 $\mathrm{NA}^{(1)}\text{-}\operatorname{Not}$ sampled because Navy removed from sampling plan in 2013

NA⁽²⁾ - Not sampled due to well being compromised during sampling event
NA - Not Applicable
ND - Not Detected

NE - No exceedance of respective MCL or PRG $\mu g/L$ - micrograms per liter

MCL - Federal Maximum Contaminant Level (USEPA, 2009)

PCBs - Polychlorinated Biphenyls PRG - Preliminary Remediation Goal, as established in Site 3 Record of Decision (Navy, 2004)

 \boldsymbol{J} - Estimated concentration

L - Analyte is present. Actual value is expected to be higher.

Table 5-4
Water Quality and Natural Attenuation Parameters – June 2020
Site 3 – Ball Road Landfill and Burn Pits
Naval Support Activity, Mechanicsburg, Pennsylvania

Well Identification	Date	Time	Hq (U2)	Specific Conductance (mS/cm)	Temperature (°C)	Dissolved Oxygen (ppm)	ORP (mV)	Turbidity (NTU)
S03M01	07/01/20	11:30	6.98	0.797	13.50	8.09	103.9	5.81
S03M02	06/29/20	14:15	7.52	0.824	17.15	11.38	97.4	10.20
S03M03	06/29/20	19:40	6.91	0.579	15.54	1.99	-106.3	9.81
S03M07	06/29/20	16:00	7.31	0.582	20.94	5.40	-89.6	14.61
S03M13	06/30/20	9:30	7.00	0.385	16.66	1.39	-84.0	0.78
S03M14	06/24/20	14:10	7.10	0.339	18.02	1.68	-28.8	9.84
S03M15	06/30/20	11:45	7.65	0.916	21.51	2.88	-114.5	2.35
S03M16	06/23/20	17:45	6.60	0.417	17.91	6.97	70.9	35.2
S03M17	06/24/20	10:05	6.42	0.627	17.91	0.66	-50.9	5.33
S03M18	06/24/20	10:35	7.02	0.397	20.18	0.92	-112.5	2.31
S03M20	06/24/20	17:15	7.45	0.123	17.46	6.05	111.3	12.0
S03M21	06/29/20	17:50	7.22	0.429	17.29	9.80	111.5	8.36
S03M22	06/25/20	16:10	6.04	0.520	16.94	3.23	83.0	39.7
S03M41	06/25/20	12:45	6.78	0.467	18.82	0.85	-66.0	29.7
S03M44	06/30/20	13:50	7.24	0.752	17.16	5.64	77.6	5.64
S03M45	06/30/20	9:50	7.69	0.488	16.14	2.60	94.3	2.68
S03M46	06/30/20	15:00	7.24	0.956	18.79	1.70	84.4	5.14
S03M48	06/25/20	13:45	7.00	0.717	20.30	3.98	127.3	9.86
S03M49	06/25/20	16:31	6.86	0.774	16.49	8.10	5.2	43.1
S03M50	06/25/20	9:30	6.92	1.092	17.01	3.08	-27.0	51.9
S03M51	06/25/20	18:30	7.71	0.383	17.01	12.04	134.4	$\frac{31.9}{46.7}$
S03M52								
	06/25/20	18:10	7.01	0.636	16.74	1.62	134.3	8.79
S03M54	06/24/20	14:35	7.72	0.694	23.25	0.65	-189.8	5.42
S03M57	06/23/20	17:45	7.09	0.388	19.80	0.88	-84.8	3.05
S03M61S*	00/00/00	10.00	7.07	0.400	10.04		 70.0	1.70
S03M62S	06/29/20	18:30	7.07	0.466	16.04	7.35	73.9	1.50
S03M63D1	06/26/20	11:10	12.07	4.517	17.17	1.69	74.4	7.00
S03M63D2	06/26/20	9:05	11.68	2.119	17.45	1.23	121.6	2.45
S03M63D3	06/25/20	10:37	11.54	1.412	18.00	3.99	39.2	29.8
S03M64D1	06/24/20	17:10	12.15	5.124	19.84	1.90	-37.8	7.61
S03M64D2	06/26/20	12:55	11.56	2.016	18.51	0.65	83.6	9.57
S03M64D3**								
S03M65D	06/29/20	13:30	9.46	0.300	17.80	1.28	-145.8	7.88
S03M66D1	06/30/20	11:15	11.10	1.378	18.15	1.77	89.4	8.44
S03M66D2	06/30/20	13:05	11.20	1.512	19.17	1.65	18.7	8.52
S03M67D1	07/01/20	11:20	7.09	0.486	17.33	1.60	97.6	4.81
S03M67D2	07/01/20	12:45	6.90	0.404	16.44	0.86	2.1	2.80
S03M68D1	06/30/20	15:45	6.99	0.615	16.06	1.40	60.4	6.25
S03M68D2	06/30/20	17:45	6.95	0.674	15.69	1.08	-45.0	4.02
S03M69D1	06/30/20	18:45	7.23	0.546	19.03	3.80	-46.1	2.80
S03M69D2	06/30/20	17:05	7.27	0.584	15.36	1.67	-27.2	2.61
S03M70	06/29/20	16:55	6.70	0.741	18.19	0.91	-70.5	6.03
S03M71	06/29/20	14:50	8.59	0.230	21.07	1.32	-37.2	6.76
S03M72	06/29/20	12:55	12.00	3.067	22.09	0.89	-40.0	0.35
S03M73D1	06/26/20	12:00	7.10	0.491	17.94	2.27	-65.0	8.57
S03M73D2	06/26/20	10:35	7.50	0.373	19.29	11.64	-24.3	10.30
DD-1	07/01/20	9:25	6.94	0.257	14.39	3.38	146.0	6.68
DD-7D	07/01/20	12:40	7.07	0.476	15.20	5.30	104.1	5.69
Natural Attenuation Screening	NA	NA	5 < pH < 9	NA	> 20 °C	< 0.5 mg/L Favorable > 5.0 mg/L	< 50 Favorable >100	NA
Protocols Protocols						Unfavorable	Unfavorable	

Notes:

SU - standard unit

mS/cm - millisiemens per centimeter

°C - degrees Celsius

ppm - parts per million

 \mbox{mV} - $\mbox{millivolts}$

ORP - oxidation reduction potential

NA - Not Applicable

NTU - nephelometric turbidity units

 ${}^{\star}\mathrm{Lack}$ of sufficient water for sampling

**Well was compromised during sampling event

Table 6-1 Summary of Mann-Kendall Trend Analysis – Total VOCs Site 3 – Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

		Number of					Alpha=0.20		Alpha = 0.10		Alpha = 0.05		
Location	N	Detected Concentrations	S	p-value	Test Statistic	Critical Value	Trend?	Critical Value	Trend?	Critical Value	Trend?		
Former Burn	n Pit #1 – Sc	ource Area											
S03M48	14	14	-53	0.00221	-53	17	Significant Downward Trend	25	Significant Downward Trend	31	Significant Downward Trend		
S03M50	17	17	12	0.325	12	22	No Trend	34	No Trend	42	No Trend		
S03M54	19	19	-127	5.21E-06	-127	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend		
Former Burn Pit #1 Plume													
S03M49	16	16	-42	0.0325	-42	20	Significant Downward Trend	30	Significant Downward Trend	38	Significant Downward Trend		
S03M52	11	7	6	0.224	6	13	Significant Upward Trend	19	No Trend	23	No Trend		
Former Burn Pit #2 — Source Area													
S03M07	13	13	-40	0.00867	-40	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend		
S03M15	13	13	-10	0.291	-10	16	No Trend	24	No Trend	28	No Trend		
S03M18	19	19	-57	0.025	-57	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend		
S03M41	14	14	-21	0.137	-21	17	Significant Downward Trend	25	No Trend	31	No Trend		
S03M57	11	11	-39	0.00155	-39	13	Significant Downward Trend	19	Significant Downward Trend	23	Significant Downward Trend		
Former Burn	ı Pit #2 Pluı	me											
S03M14	13	13	-30	0.0384	-30	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend		
S03M17	19	19	-29	0.164	-29	27	Significant Downward Trend	39	No Trend	59	No Trend		
S03M44	19	19	-51	0.0401	-51	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend		
S03M45	17	17	-70	0.00224	-70	22	Significant Downward Trend	34	Significant Downward Trend	42	Significant Downward Trend		
S03M46	19	19	-145	2.35E-07	-145	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend		
S03M62S	13	12	-38	0.0056	-38	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend		
Plume Fring	е												
S03M01	13	10	-27	0.01	-27	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend		
S03M02	13	12	-44	0.0016	-44	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend		
S03M13	13	10	2	0.464	2	16	No Trend	24	No Trend	28	No Trend		
S03M16	19	19	-97	3.92E-04	-97	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend		
S03M20	17	13	-56	3.96E-04	-56	22	Significant Downward Trend	34	Significant Downward Trend	42	Significant Downward Trend		
S03M21	13	10	-21	0.0368	-21	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend		
S03M22	18	18	-113	1.11E-05	-113	25	Significant Downward Trend	35	Significant Downward Trend	45	Significant Downward Trend		
S03M51	11	11	-8	0.292	-8	13	No Trend	19	No Trend	23	No Trend		
S03M61S	S03M61S Not Sampled												
Site 9													
DD-1	13	13	-28	0.0498	-28	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend		
DD-7D	13	13	-54	6.11E-04	-54	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend		

Notes:

If p-value is less than alpha then reject null hypothesis of no trend.

If absolute value of the test statistic is greater than or equal to the critical value then reject null hypothesis of no trend.

N: Sample Size

S: Kendall S Statistic

NA: Test is not applicable, there are less than four samples.

ND: Test is not applicable, there are less than two detected samples.

June 2020 Mann Kendall analysis based solely on ROD-defined VOC COCs

Source: Data Quality Assessment: Statistical Methods for Practitioners EPA QA/G-9S, EPA/240/B-06/003. February 2006.

Table 6-2 Summary of Mann-Kendall Trend Analysis – Trichloroethene Site 3 – Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

		Number of					Alpha=0.20		Alpha = 0.10	Alpha = 0.05		
Location	N	Detected Concentrations	S	p-value	Test Statistic	Critical Value	Trend?	Critical Value	Trend?	Critical Value	Trend?	
Former Burr	n Pit #1 – Sc	ource Area										
S03M48	14	14	-69	9.85 E-05	-69	17	Significant Downward Trend	25	Significant Downward Trend	31	Significant Downward Trend	
Former Burr	Pit #1 Plu	me										
S03M49	16	16	-65	0.00196	-65	20	Significant Downward Trend	30	Significant Downward Trend	38	Significant Downward Trend	
S03M50	17	11	-68	2.85E-03	-68	22	Significant Downward Trend	34	Significant Downward Trend	42	Significant Downward Trend	
S03M54	19	14	-96	4.14E-04	-96	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend	
Former Burr	Pit #2 – Sc	ource Area										
S03M41	14	14	-63	3.44E-04	-63	17	Significant Downward Trend	25	Significant Downward Trend	31	Significant Downward Trend	
Former Burr	Pit #2 Plu	me							_			
S03M17	19	12	-95	4.72E-04	-95	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend	
S03M18	19	18	-83	0.0021	-83	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend	
S03M44	19	19	-95	4.96E-04	-95	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend	
S03M46	19	19	-149	1.12E-07	-149	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend	
S03M62S	13	12	-47	0.0025	-47	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend	
Plume Fring	е					•						
S03M01	13	8	-40	0.007	-40	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend	
S03M02	13	11	-56	3.79E-04	-56	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend	
S03M07	13	4	19	0.135	19	16	Significant Upward Trend	24	No Trend	28	No Trend	
S03M13	13	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	
S03M14	13	8	-37	0.0135	-37	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend	
S03M15	13	2	2	0.473	2	16	No Trend	24	No Trend	28	No Trend	
S03M16	19	18	-50	0.0431	-50	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend	
S03M20	17	3	-15	0.274	-15	22	No Trend	34	No Trend	42	No Trend	
S03M21	13	9	-45	3.44E-03	-45	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend	
S03M22	18	17	-113	1.05E-05	-113	25	Significant Downward Trend	35	Significant Downward Trend	45	Significant Downward Trend	
S03M45	17	16	-96	4.55E-05	-96	22	Significant Downward Trend	34	Significant Downward Trend	42	Significant Downward Trend	
S03M51	11	11	-13	0.174	-13	13	Significant Downward Trend	19	No Trend	23	No Trend	
S03M52	11	2	0	***	0	13	No Trend	19	No Trend	23	No Trend	
S03M57	11	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
S03M61S	Not Sampled											
Site 9												
DD-1	13	13	-24	0.0803	-24	16	Significant Downward Trend	24	Significant Downward Trend	28	No Trend	
DD-7D	13	13	-57	3.09E-04	-57	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend	

Notes:

If p-value is less than alpha then reject null hypothesis of no trend.

If absolute value of the test statistic is greater than or equal to the critical value then reject null hypothesis of no trend.

N: Sample Size S: Kendall S Statistic

NA: Test is not applicable, there are less than four samples.

ND: Test is not applicable, there are less than two detected samples.

***: p-value is not applicable

Source: Data Quality Assessment: Statistical Methods for Practitioners EPA QA/G-9S, EPA/240/B-06/003. February 2006.

Table 6-3

Summary of Mann-Kendall Trend Analysis – 1,2-Dichloroethylene (cis- or Total) Site 3 – Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

		Number of					Alpha=0.20		Alpha = 0.10		Alpha = 0.05		
Location	N	Detected Concentrations	S	p-value	Test Statistic	Critical Value	Trend?	Critical Value	Trend?	Critical Value	Trend?		
Former Buri	n Pit #1 – Sc												
S03M50	17	17	12	0.325	12	22	No Trend	34	No Trend	42	No Trend		
Former Buri	n Pit #1 Plui	me											
S03M48	14	14	-48	0.00498	-48	17	Significant Downward Trend	25	Significant Downward Trend	31	Significant Downward Trend		
S03M49	16	16	-40	0.0396	-40	20	Significant Downward Trend	30	Significant Downward Trend	38	Significant Downward Trend		
S03M54	19	19	-111	5.94E-05	-111	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend		
Former Burn Pit #2 — Source Area													
S03M15	13	13	-26	0.0636	-26	16	Significant Downward Trend	24	Significant Downward Trend	28	No Trend		
S03M18	19	18	-39	0.0918	-39	27	Significant Downward Trend	39	Significant Downward Trend	59	No Trend		
S03M41	14	14	-5	0.413	-5	17	No Trend	25	No Trend	31	No Trend		
Former Buri	n Pit #2 Plui	me											
S03M17	19	19	-101	2.34E-04	-101	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend		
S03M44	19	19	-51	0.0401	-51	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend		
S03M45	17	17	-66	0.00371	-66	22	Significant Downward Trend	34	Significant Downward Trend	42	Significant Downward Trend		
Plume Fring	ie												
S03M01	13	7	-24	0.0769	-24	16	Significant Downward Trend	24	Significant Downward Trend	28	No Trend		
S03M02	13	8	-22	0.0981	-22	16	Significant Downward Trend	24	No Trend	28	No Trend		
S03M07	13	8	-43	0.00513	-43	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend		
S03M13	13	6	6	0.378	6	16	No Trend	24	No Trend	28	No Trend		
S03M14	13	13	-34	0.022	-34	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend		
S03M16	19	19	-67	0.0104	-67	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend		
S03M20	17	0	ND	ND	ND	ND	ND	ND	ND	ND	ND		
S03M21	13	1	ND	ND	ND	ND	ND	ND	ND	ND	ND		
S03M22	18	18	-104	4.73E-05	-104	25	Significant Downward Trend	35	Significant Downward Trend	45	Significant Downward Trend		
S03M46	19	9	-70	0.00694	-70	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend		
S03M51	11	11	-3	0.438	-3	13	No Trend	19	No Trend	23	No Trend		
S03M52	11	2	2	0.467	2	13	No Trend	19	No Trend	23	No Trend		
S03M57	11	7	-16	0.119	-16	13	Significant Downward Trend	19	No Trend	23	No Trend		
S03M62S	13	5	-28	0.0455	-28	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend		
	S03M61S Not Sampled												
Site 9													
DD-1	13	5	-3	0.45	-3	16	No Trend	24	No Trend	28	No Trend		
DD-7D	13	10	-51	0.00112	-51	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend		

Notes:

If p-value is less than alpha then reject null hypothesis of no trend.

If absolute value of the test statistic is greater than or equal to the critical value then reject null hypothesis of no trend.

N: Sample Size S: Kendall S Statistic

NA: Test is not applicable, there are less than four samples.

ND: Test is not applicable, there are less than two detected samples.

June 2020 Mann Kendall analysis based solely on cis-1,2-DCE analytical results

Source: Data Quality Assessment: Statistical Methods for Practitioners EPA QA/G-9S, EPA/240/B-06/003. February 2006.

Table 6-4
Summary of Mann-Kendall Trend Analysis – Vinyl Chloride
Site 3 – Ball Road Landfill and Burn Pits
Naval Support Activity, Mechanicsburg, Pennsylvania

							Alpha=0.20		Alpha = 0.10		Alpha = 0.05
Location	N	Number of Detected Concentrations	S	p-value	Test Statistic	Critical Value	Trend?	Critical Value	Trend?	Critical Value	Trend?
Former Burn	Pit #1 – So	urce Area									
S03M50	17	16	30	0.116	30	22	Significant Upward Trend	34	No Trend	42	No Trend
Former Burn	Pit #1 Plum	ne									
S03M48	14	7	30	0.0529	30	17	Significant Upward Trend	25	Significant Upward Trend	31	Significant Upward Trend
S03M54	19	19	-97	3.86E-04	-97	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend
Former Burn Pit #2 — Source Area											
S03M15	13	13	-14	0.214	-14	16	No Trend	24	No Trend	28	No Trend
S03M18	19	15	-90	9.18E-04	-90	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend
Former Burn	Pit #2 Plum	ne									
S03M17	19	16	11	0.363	11	27	No Trend	39	No Trend	59	No Trend
S03M41	14	14	23	0.114	23	17	Significant Upward Trend	25	No Trend	31	No Trend
Plume Fringe)										
S03M01	13	0	ND	ND	ND	ND	ND	ND	ND	ND	ND
S03M02	13	0	ND	ND	ND	ND	ND	ND	ND	ND	ND
S03M07	13	8	-37	0.0139	-37	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend
S03M13	13	0	ND	ND	ND	ND	ND	ND	ND	ND	ND
S03M14	13	10	-21	0.11	-21	16	Significant Downward Trend	24	No Trend	28	No Trend
S03M16	19	16	-74	0.00513	-74	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend
S03M20	17	0	ND	ND	ND	ND	ND	ND	ND	ND	ND
S03M21	13	0	ND	ND	ND	ND	ND	ND	ND	ND	ND
S03M22	18	4	-47	0.0357	-47	25	Significant Downward Trend	35	Significant Downward Trend	45	Significant Downward Trend
S03M44	19	9	-49	0.0447	-49	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend
S03M45	17	3	-56	0.00973	-56	22	Significant Downward Trend	34	Significant Downward Trend	42	Significant Downward Trend
S03M46	19	0	ND	ND	ND	ND	ND	ND	ND	ND	ND
S03M49	16	8	8	0.376	8	20	No Trend	30	No Trend	38	No Trend
S03M51	11	2	7	0.311	7	13	No Trend	19	No Trend	23	No Trend
S03M52	11	0	ND	ND	ND	ND	ND	ND	ND N. W. I	ND	ND
S03M57	11	6	-2	0.468	-2	13	No Trend	19	No Trend	23	No Trend
S03M61S	10	0 1	ND	ND	ND	ND	Not Sampled ND	ND	ND	ND	ND
S03M62S	13	0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Site 9	10		M	375	MD	MD	ND	ND	ND.) ID	MD
DD-1	13	0	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND
DD-7D	13	0	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

If p-value is less than alpha then reject null hypothesis of no trend.

If absolute value of the test statistic is greater than or equal to the critical value then reject null hypothesis of no trend.

N: Sample Size

S: Kendall S Statistic

NA: Test is not applicable, there are less than four samples.

ND: Test is not applicable, there are less than two detected samples.

Source: Data Quality Assessment: Statistical Methods for Practitioners EPA QA/G-9S, EPA/240/B-06/003. February 2006.

Table 6-5 Summary of Mann-Kendall Trend Analysis – Chlorobenzene Site 3 – Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

		Number of					Alpha=0.20		Alpha = 0.10		Alpha = 0.05
Location	N	Detected Concentrations	S	p-value	Test Statistic	Critical Value	Trend?	Critical Value	Trend?	Critical Value	Trend?
Former Burn P	it #2 – Soui	rce Area									
S03M07	13	12	-30	0.0384	-30	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend
S03M18	19	19	-57	0.025	-57	27	Significant Downward Trend	39	Significant Downward Trend	59	Significant Downward Trend
S03M57	11	10	-29	0.0146	-29	13	Significant Downward Trend	19	Significant Downward Trend	23	Significant Downward Trend
Former Burn Pit #2 Plume											
S03M14	13	12	-18	0.15	-18	16	Significant Downward Trend	24	No Trend	28	No Trend
S03M15	13	13	20	0.123	20	16	Significant Upward Trend	24	No Trend	28	No Trend
S03M17	19	19	19	0.264	19	27	No Trend	39	No Trend	59	No Trend
S03M41	14	14	-13	0.256	-13	17	No Trend	25	No Trend	31	No Trend
Plume Fringe											
S03M01	13	0	ND	ND	ND	ND	ND	ND	ND	ND	ND
S03M02	13	0	ND	ND	ND	ND	ND	ND	ND	ND	ND
S03M13	13	0	ND	ND	ND	ND	ND	ND	ND	ND	ND
S03M16	19	14	-44	0.0658	-44	27	Significant Downward Trend	39	Significant Downward Trend	59	No Trend
S03M20	17	0	ND	ND	ND	ND	ND	ND	ND	ND	ND
S03M21	13	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
S03M22	18	2	-59	0.0107	-59	25	Significant Downward Trend	35	Significant Downward Trend	45	Significant Downward Trend
S03M44	19	10	-12	0.348	-12	27	No Trend	39	No Trend	59	No Trend
S03M45	17	4	-53	0.0136	-53	22	Significant Downward Trend	34	Significant Downward Trend	42	Significant Downward Trend
S03M46	19	0	ND	ND	ND	ND	ND	ND	ND	ND	ND
S03M48	14	5	-1	0.5	-1	17	No Trend	25	No Trend	31	No Trend
S03M49	16	5	-18	0.218	-18	20	No Trend	30	No Trend	38	No Trend
S03M50	17	12	20	0.217	20	22	No Trend	34	No Trend	42	No Trend
S03M51	11	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
S03M52	11	0	ND	ND	ND	ND	ND	ND	ND	ND	ND
S03M54	19	15	-42	0.075	-42	27	Significant Downward Trend	39	Significant Downward Trend	59	No Trend
S03M61S				_			Not Sampled				
S03M62S	13	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
Site 9											
DD-1	13	2	17	0.147	17	16	Significant Upward Trend	24	No Trend	28	No Trend
DD-7D	13	0	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

If p-value is less than alpha then reject null hypothesis of no trend.

If absolute value of the test statistic is greater than or equal to the critical value then reject null hypothesis of no trend.

N: Sample Size

S: Kendall S Statistic

NA: Test is not applicable, there are less than four samples.

ND: Test is not applicable, there are less than two detected samples.

Source: Data Quality Assessment: Statistical Methods for Practitioners EPA QA/G-9S, EPA/240/B-06/003. February 2006.

Table 6-6 Summary of Mann-Kendall Trend Analysis – Arsenic Site 3 – Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

		Number of					Alpha=0.20		Alpha = 0.10		Alpha = 0.05	
Location	N	Detected Concentrations	S	p-value	Test Statistic	Critical Value	Trend?	Critical Value	Trend?	Critical Value	Trend?	
Former Burn	n Pit #2 – S	ource Area										
S03M07	12	12	-25	0.0495	-25	14	Significant Downward Trend	20	Significant Downward Trend	26	No Trend	
Former Burn	n Pit #2 Plu	ıme										
S03M14	12	12	9	0.291	9	14	No Trend	20	No Trend	26	No Trend	
S03M15	12	12	19	0.108	19	14	Significant Upward Trend	20	No Trend	26	No Trend	
S03M17	18	15	2	0.485	2	25	No Trend	35	No Trend	45	No Trend	
S03M18	18	17	35	0.0986	35	25	Significant Upward Trend	35	No Trend	45	No Trend	
Plume Fringe												
S03M01	12	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	
S03M02	12	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
S03M13	12	10	4	0.418	4	14	No Trend	20	No Trend	26	No Trend	
S03M16	18	14	-55	0.0201	-55	25	Significant Downward Trend	35	Significant Downward Trend	45	Significant Downward Trend	
S03M20	16	9	-32	0.0785	-32	20	Significant Downward Trend	30	Significant Downward Trend	38	No Trend	
S03M21	12	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	
S03M22	17	3	-29	0.119	-29	22	Significant Downward Trend	34	No Trend	42	No Trend	
S03M41	13	13	-2	0.476	-2	16	No Trend	24	No Trend	28	No Trend	
S03M44	18	3	-36	0.0875	-36	25	Significant Downward Trend	35	Significant Downward Trend	45	Significant Downward Trend	
S03M45	16	8	19	0.207	19	20	No Trend	30	No Trend	38	No Trend	
S03M46	18	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
S03M48	13	7	16	0.175	16	16	Significant Upward Trend	24	No Trend	28	No Trend	
S03M49	15	3	-19	0.179	-19	19	Significant Downward Trend	29	No Trend	35	No Trend	
S03M50	16	6	9	0.358	9	20	No Trend	30	No Trend	38	No Trend	
S03M51	9	2	9	0.185	9	10	No Trend	14	No Trend	18	No Trend	
S03M52	10	4	4	0.39	4	11	No Trend	17	No Trend	21	No Trend	
S03M54	18	12	-16	0.283	-16	25	No Trend	35	No Trend	45	No Trend	
S03M57	10	8	-23	0.0245	-23	11	Significant Downward Trend	17	Significant Downward Trend	21	Significant Downward Trend	
S03M61S							Not Sampled					
S03M62S	12	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Site 9	Site 9											
DD-1	12	2	-1	0.5	-1	14	No Trend	20	No Trend	26	No Trend	
DD-7D	12	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	

Notes:

If p-value is less than alpha then reject null hypothesis of no trend.

If absolute value of the test statistic is greater than or equal to the critical value then reject null hypothesis of no trend.

N: Sample Size

S: Kendall S Statistic

NA: Test is not applicable, there are less than four samples.

ND: Test is not applicable, there are less than two detected samples.

Source: Data Quality Assessment: Statistical Methods for Practitioners EPA QA/G-9S, EPA/240/B-06/003. February 2006.

Table 6-7
Summary of Mann-Kendall Trend Analysis – Manganese
Site 3 – Ball Road Landfill and Burn Pits
Naval Support Activity, Mechanicsburg, Pennsylvania

							Alpha=0.20		Alpha = 0.10		Alpha = 0.05
Location	N	Number Detected Concentrations	S	p-value	Test Statistic	Critical Value	Trend?	Critical Value	Trend?	Critical Value	Trend?
Former Burn Pi	t #1 – Sour	ce Area									
S03M54	18	18	-75	0.00253	-75	25	Significant Downward Trend	35	Significant Downward Trend	45	Significant Downward Trend
Former Burn Pi	t #1 Plume										
S03M48	13	13	-24	0.0803	-24	16	Significant Downward Trend	24	Significant Downward Trend	28	No Trend
S03M49	15	15	-2	0.48	-2	19	No Trend	29	No Trend	35	No Trend
S03M50	16	15	-44	0.0264	-44	20	Significant Downward Trend	30	Significant Downward Trend	38	Significant Downward Trend
S03M52	10	10	-19	0.0537	-19	11	Significant Downward Trend	17	Significant Downward Trend	21	No Trend
Former Burn Pi	t #2 – Sour	ce Area									
S03M18	18	18	-121	2.66E-06	-121	25	Significant Downward Trend	35	Significant Downward Trend	45	Significant Downward Trend
Former Burn Pi	t #2 Plume										
S03M07	12	12	-55	1.03E-04	-55	14	Significant Downward Trend	20	Significant Downward Trend	26	Significant Downward Trend
S03M17	18	18	-57	0.017	-57	25	Significant Downward Trend	35	Significant Downward Trend	45	Significant Downward Trend
S03M41	13	13	-45	0.00358	-45	16	Significant Downward Trend	24	Significant Downward Trend	28	Significant Downward Trend
S03M57	10	10	-30	0.0046	-30	11	Significant Downward Trend	17	Significant Downward Trend	21	Significant Downward Trend
Plume Fringe											
S03M01	12	9	-35	0.00972	-35	14	Significant Downward Trend	20	Significant Downward Trend	26	Significant Downward Trend
S03M02	12	8	39	0.004334	39	14	Significant Upward Trend	20	Significant Upward Trend	26	Significant Upward Trend
S03M13	12	10	40	0.0036	40	14	Significant Upward Trend	20	Significant Upward Trend	26	Significant Upward Trend
S03M14	12	12	-5	0.392	-5	14	No Trend	20	No Trend	26	No Trend
S03M15	12	12	-41	0.00299	-41	14	Significant Downward Trend	20	Significant Downward Trend	26	Significant Downward Trend
S03M16	18	18	-83	9.34E-04	-83	25	Significant Downward Trend	35	Significant Downward Trend	45	Significant Downward Trend
S03M20	16	14	16	0.25	16	20	No Trend	30	No Trend	38	No Trend
S03M21	12	8	23	0.0652	23	14	Significant Upward Trend	20	Significant Upward Trend	26	No Trend
S03M22	17	17	-42	0.0456	-42	22	Significant Downward Trend	34	Significant Downward Trend	42	Significant Downward Trend
S03M44	18	16	59	0.014	59	25	Significant Upward Trend	35	Significant Upward Trend	45	Significant Upward Trend
S03M45	16	13	-7	0.393	-7	20	No Trend	30	No Trend	38	No Trend
S03M46	18	6	4	0.455	4	25	No Trend	35	No Trend	45	No Trend
S03M51	9	9	-2	0.458	-2	10	No Trend	14	No Trend	18	No Trend
S03M61S				_			Not Sampled				
S03M62S	12	5	25	0.046	25	14	Significant Upward Trend	20	Significant Upward Trend	26	No Trend
Site 9											
DD-1	12	5	5	0.389	5	14	No Trend	20	No Trend	26	No Trend
DD-7D	12	7	0	***	0	14	No Trend	20	No Trend	26	No Trend

Notes:

If p-value is less than alpha then reject null hypothesis of no trend.

If absolute value of the test statistic is greater than or equal to the critical value then reject null hypothesis of no trend.

N: Sample Size

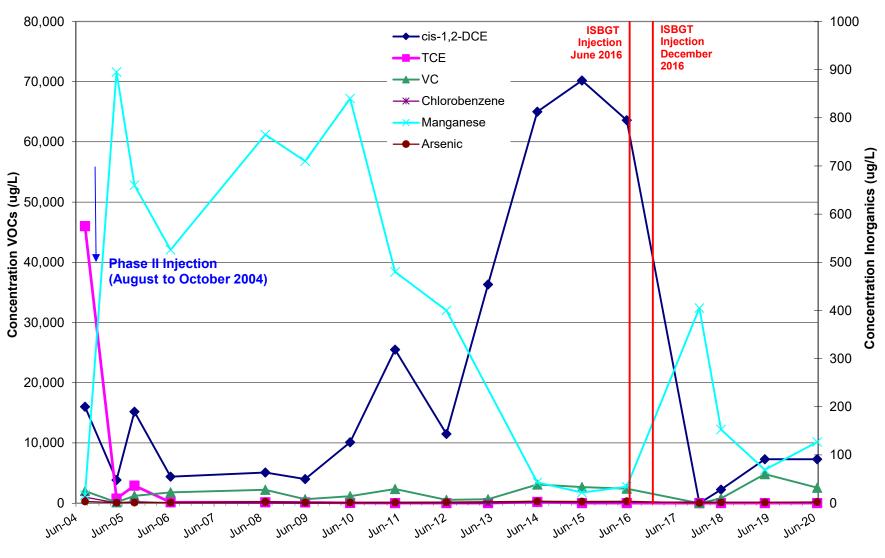
S: Kendall S Statistic

NA: Test is not applicable, there are less than four samples.

ND: Test is not applicable, there are less than two detected samples.

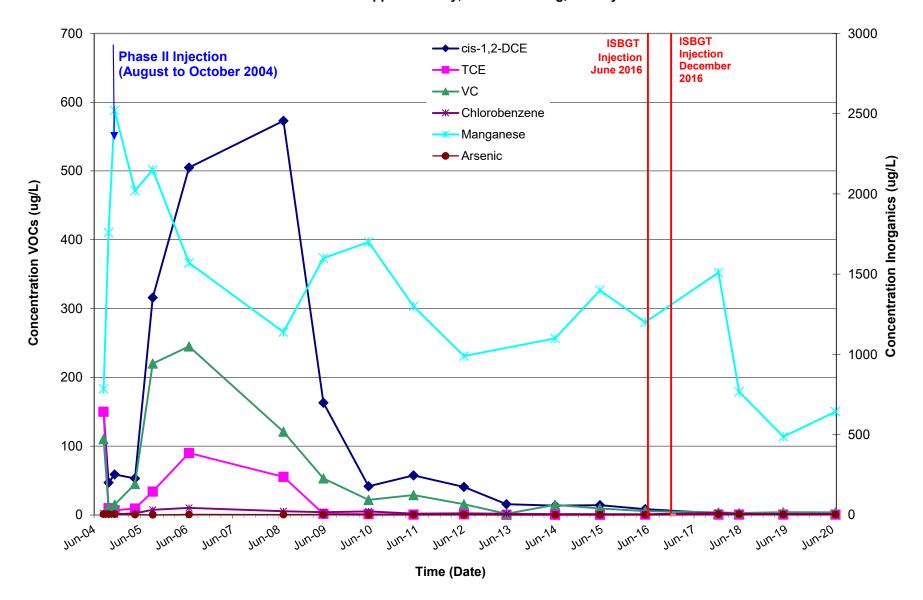
***: p-value is not applicable

Source: Data Quality Assessment: Statistical Methods for Practitioners EPA QA/G-9S, EPA/240/B-06/003. February 2006.

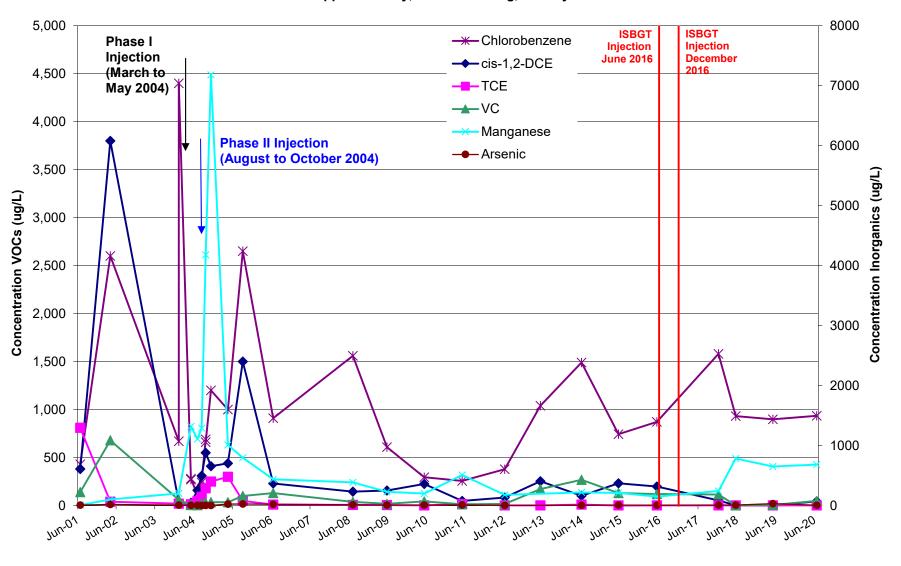

Table 6-8 Summary of Mann-Kendall Trend Analysis – Intermediate and Deep Wells Site 3 – Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

l a a wit a w	Depth			Mann-Kendall Trend at 80	-percent Confidence Level		
Location	Interval	Trichloroethene	1,2-Dichloroethylene (Total)*	Vinyl Chloride	Chlorobenzene	Arsenic	Manganese
S03M63D1	Intermediate	Significant Downward Trend	Significant Downward Trend	Significant Downward Trend	No Trend	Significant Upward Trend	Significant Upward Trend
S03M63D2	Intermediate	Significant Downward Trend	Significant Downward Trend	Significant Downward Trend	No Trend	No Trend	No Trend
S03M63D3	Deep	Significant Downward Trend	Significant Downward Trend	Significant Downward Trend	No Trend	No Trend	No Trend
S03M64D1	Intermediate	Significant Downward Trend	Significant Downward Trend	Significant Downward Trend	Significant Downward Trend	Significant Downward Trend	Significant Upward Trend
S03M64D2	Intermediate	Significant Downward Trend	Significant Downward Trend	Significant Downward Trend	Significant Downward Trend	Significant Downward Trend	Significant Upward Trend
S03M70	Deep	Significant Downward Trend	Significant Downward Trend	Significant Upward Trend	Significant Upward Trend	Significant Upward Trend	Significant Upward Trend
S03M73D1	Intermediate	No Trend	No Trend	No Trend	Significant Downward Trend	Significant Upward Trend	Significant Upward Trend
S03M73D2	Deep	No Trend	Significant Downward Trend	Significant Downward Trend	No Trend	No Trend	No Trend

Note: *June 2020 Mann Kendall analysis based solely on cis-1,2-DCE analytical results

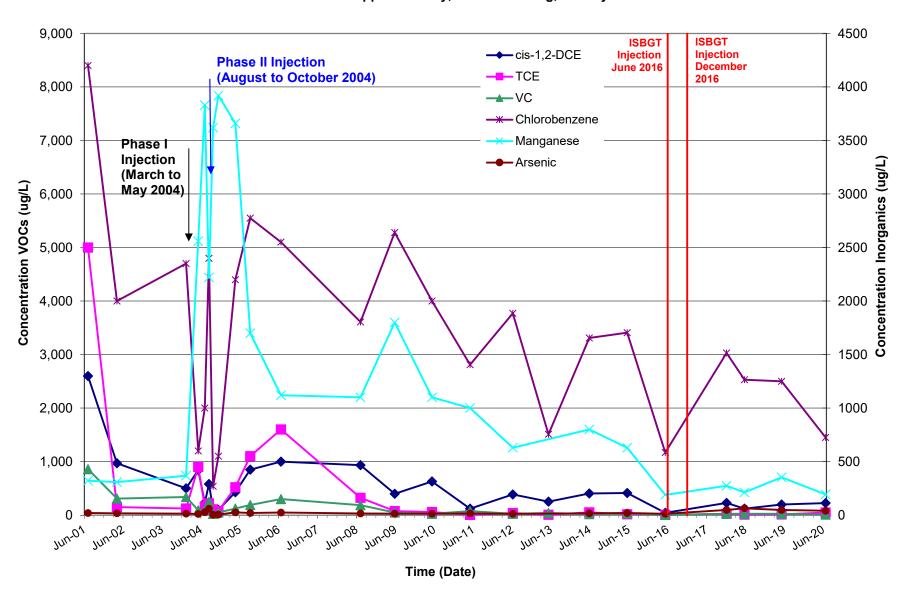


Graph 6-1
Contaminant Trends - Source Area Well S03M50
Site 3 - Ball Road Landfill and Burn Pits
Naval Support Activity, Mechanicsburg, Pennsylvania

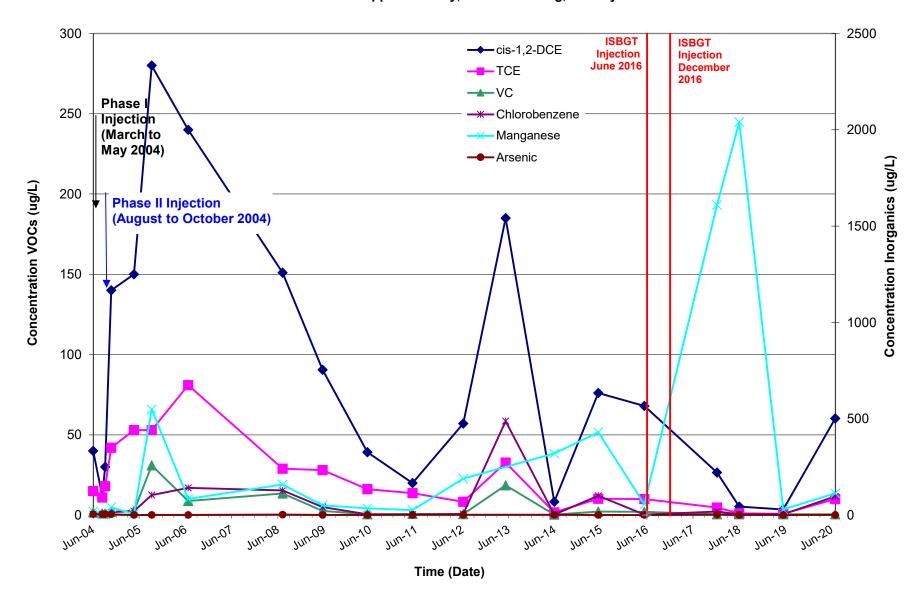


Time (Date)

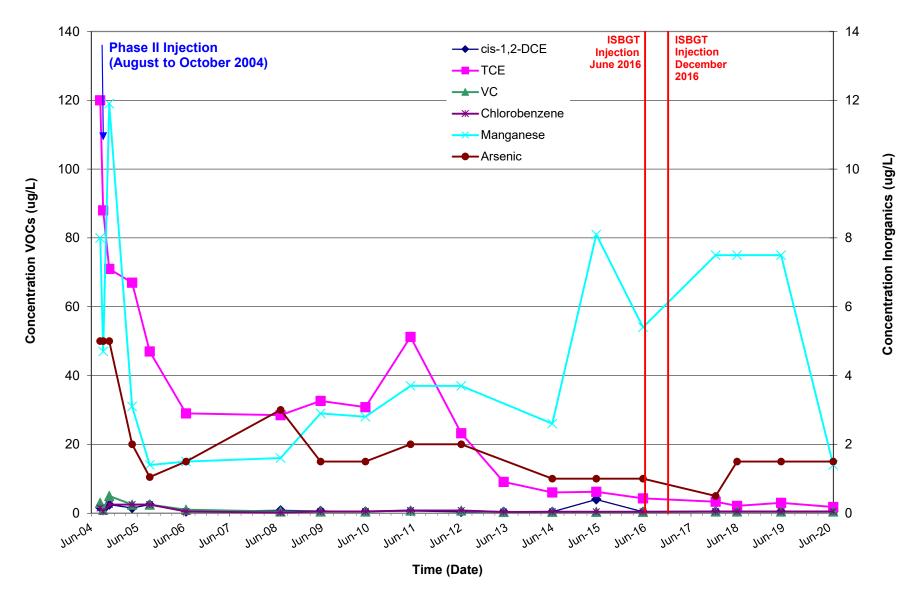
Graph 6-2
Contaminant Trends - Source Area Well S03M54
Site 3 - Ball Road Landfill and Burn Pits
Naval Support Activity, Mechanicsburg, Pennsylvania

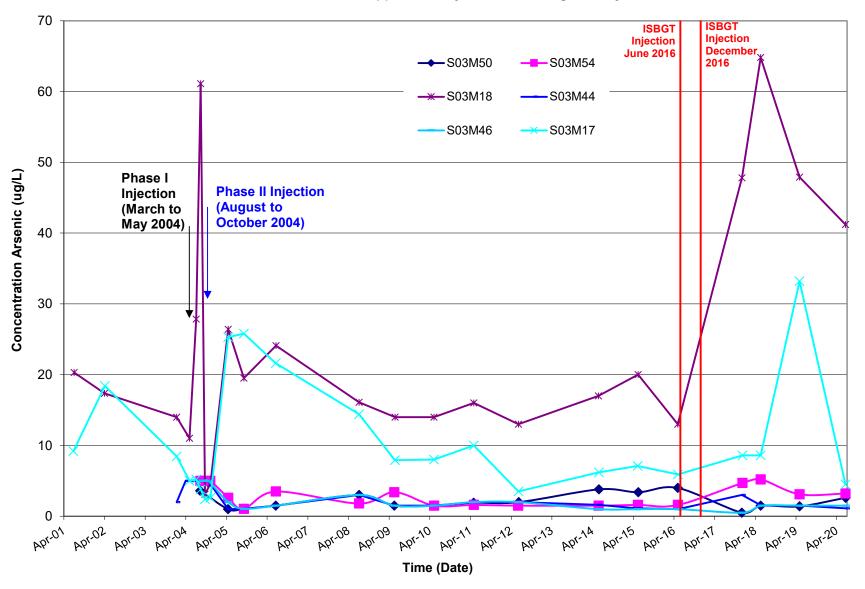


Graph 6-3
Contaminant Trends - Source Area Well S03M17
Site 3 - Ball Road Landfill and Burn Pits
Naval Support Activity, Mechanicsburg, Pennsylvania

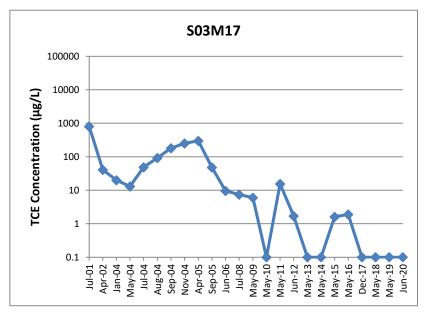


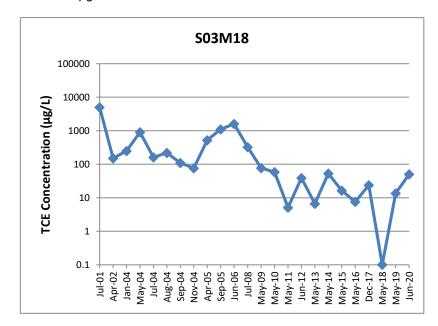
Time (Date)

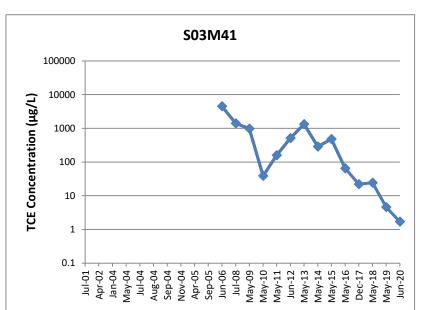

Graph 6-4
Contaminant Trends - Source Area Well S03M18
Site 3 - Ball Road Landfill and Burn Pits
Naval Support Activity, Mechanicsburg, Pennsylvania

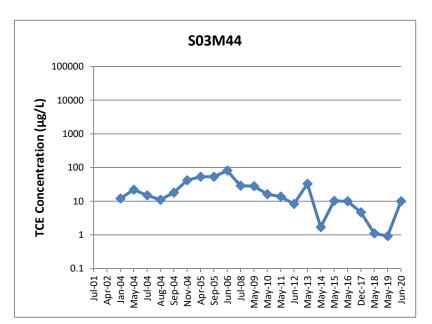

Graph 6-5
Contaminant Trends - Downgradient Well S03M44
Site 3 - Ball Road Landfill and Burn Pits
Naval Support Activity, Mechanicsburg, Pennsylvania

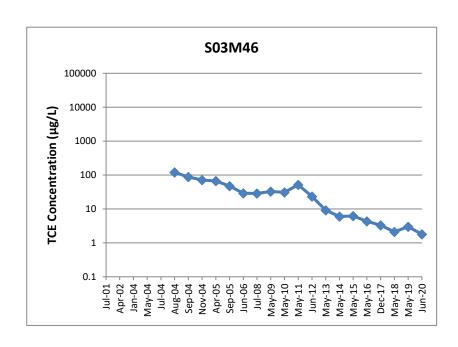
Graph 6-6
Contaminant Trends - Downgradient Well S03M46
Site 3 - Ball Road Landfill and Burn Pits
Naval Support Activity, Mechanicsburg, Pennsylvania

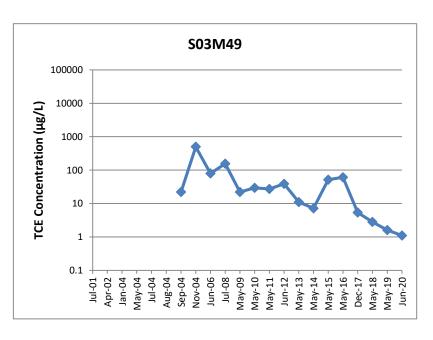


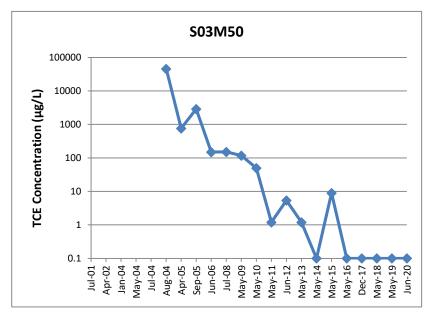

Graph 6-7
Contaminant Trends - Arsenic by Well
Site 3 - Ball Road Landfill and Burn Pits
Naval Support Activity, Mechanicsburg, Pennsylvania

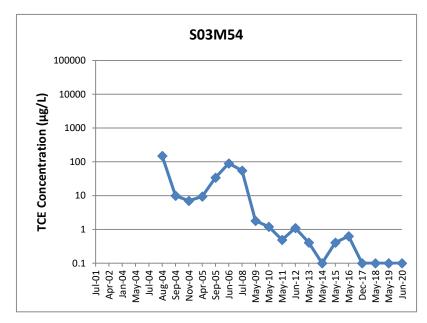


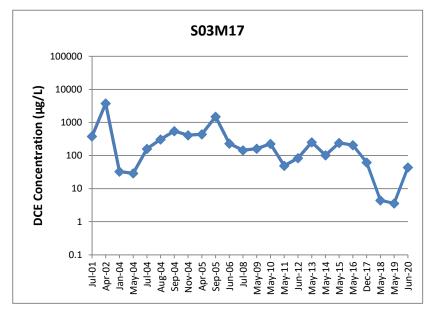

Graph 6-8
Site 3 Groundwater Trends - Trichloroethene
Site 3 - Ball Road Landfill and Burn Pits
Naval Support Activity, Mechanicsburg, Pennsylvania

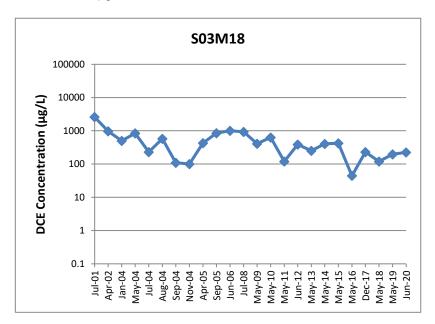

Trichloroethene MCL/PRG = $5 \mu g/L$

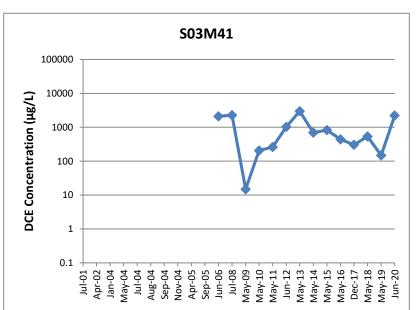


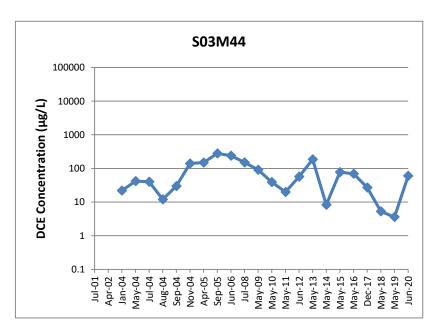


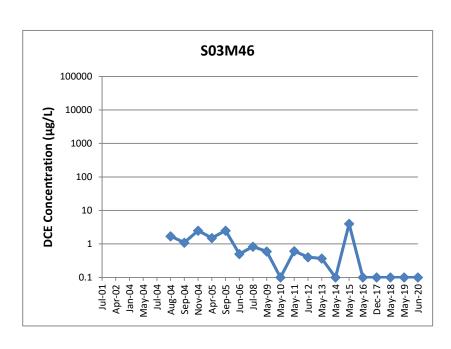


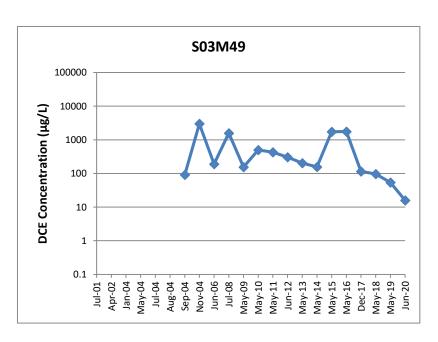


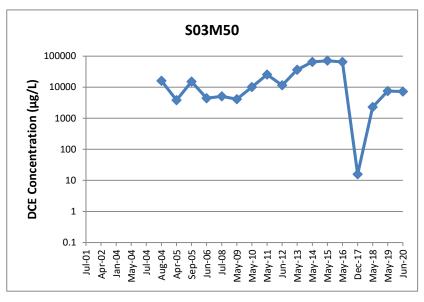


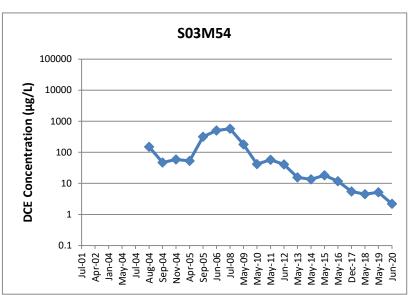


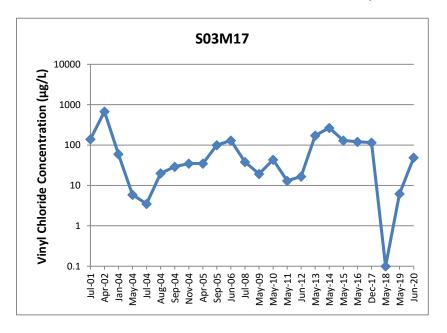

Graph 6-9
Site 3 Groundwater Trends - 1,2-Dichloroethene (Total)
Site 3 - Ball Road Landfill and Burn Pits
Naval Support Activity, Mechanicsburg, Pennsylvania

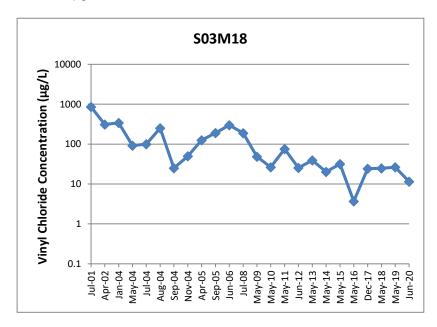

cis-1,2-Dichloroethene MCL/PRG = $70 \mu g/L$

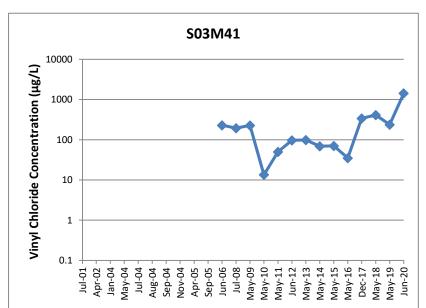


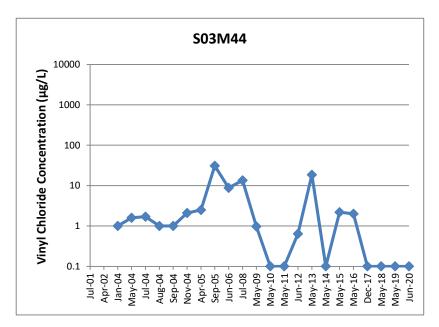


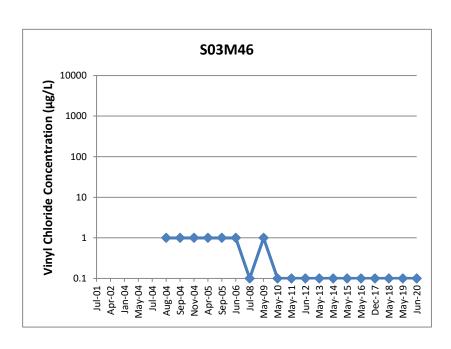


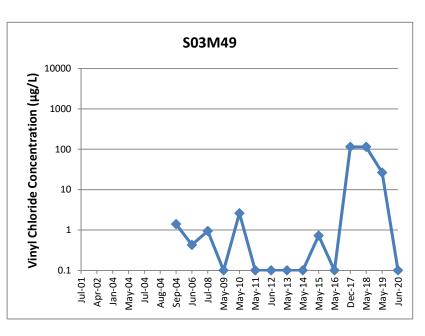


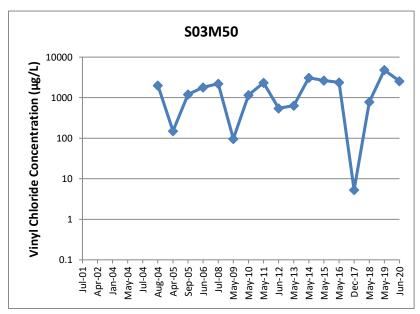


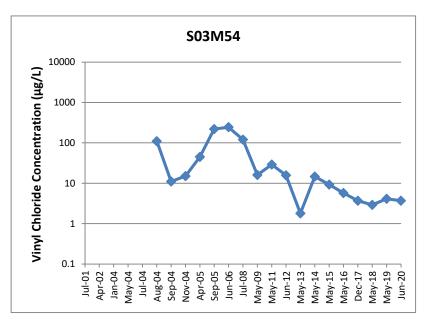

Note: June 2020 data based solely on cis-1,2,-DCE analytical results

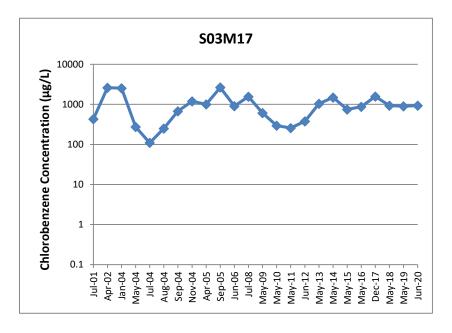

Graph 6-10 Site 3 Groundwater Trends - Vinyl Chloride Site 3 - Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

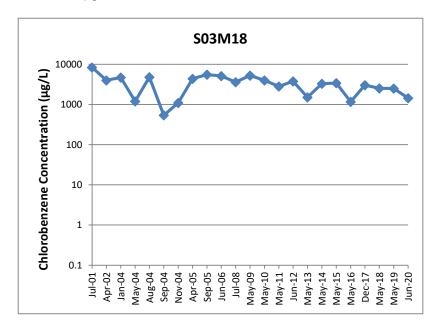

Vinyl Chloride MCL/PRG = $2 \mu g/L$

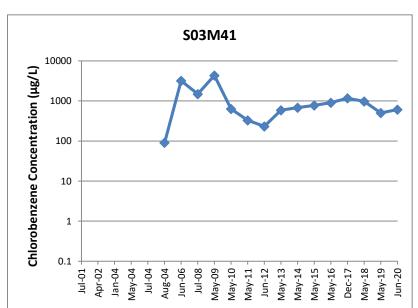


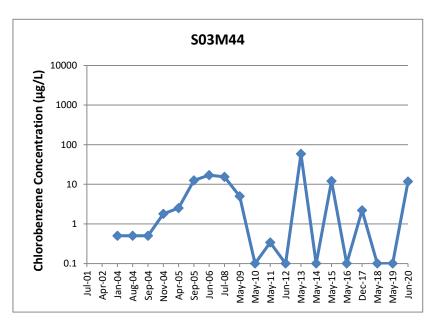


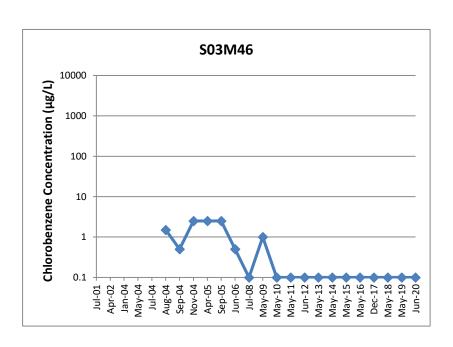


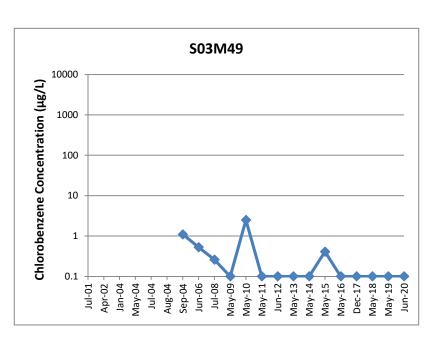


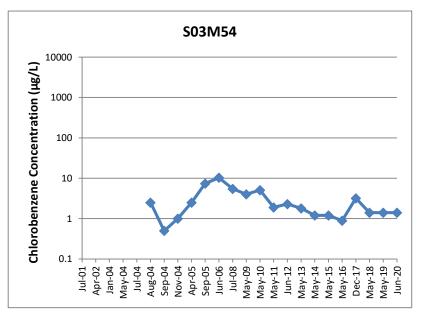


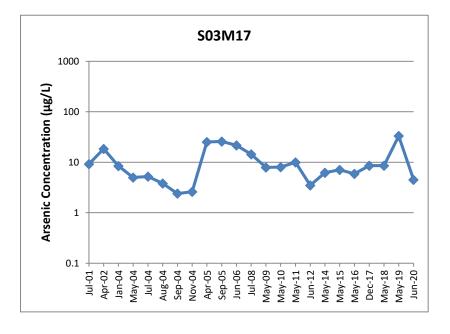


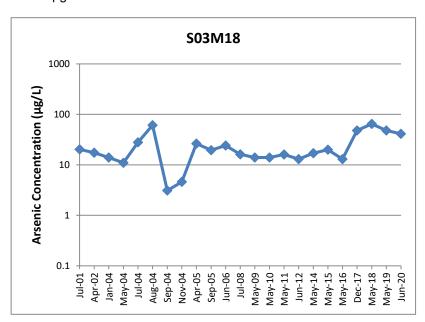

Graph 6-11
Site 3 Groundwater Trends - Chlorobenzene
Site 3 - Ball Road Landfill and Burn Pits
Naval Support Activity, Mechanicsburg, Pennsylvania

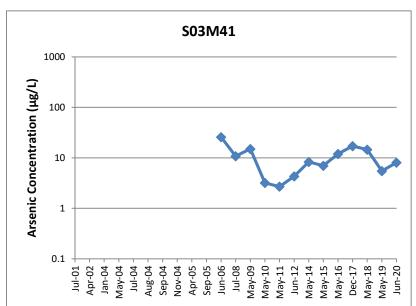

Chlorobenzene MCL/PRG = 100 µg/L

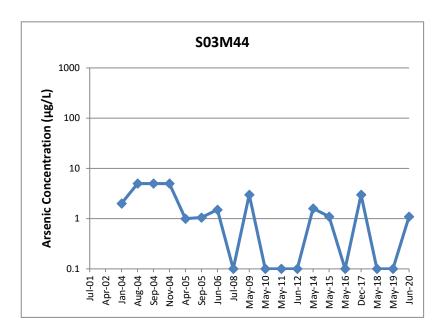


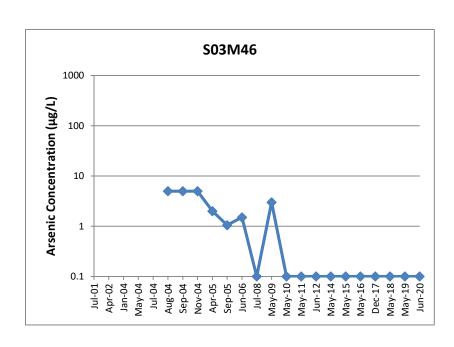


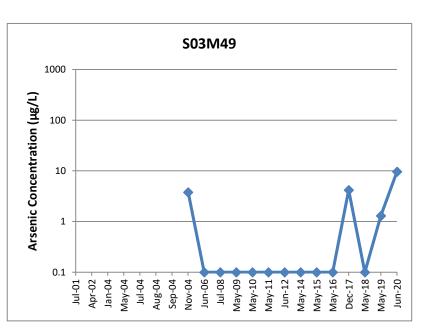


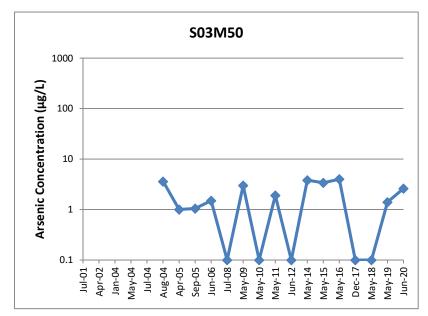


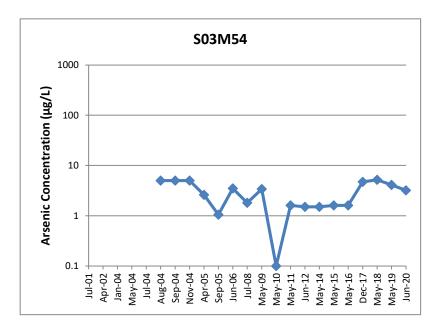


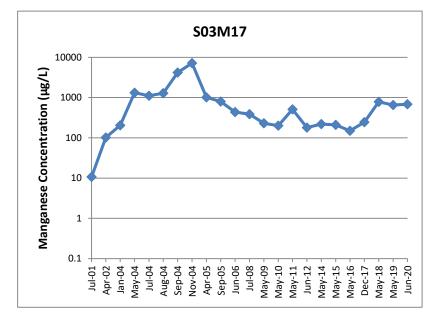

Graph 6-12 Site 3 Groundwater Trends - Arsenic Site 3 - Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

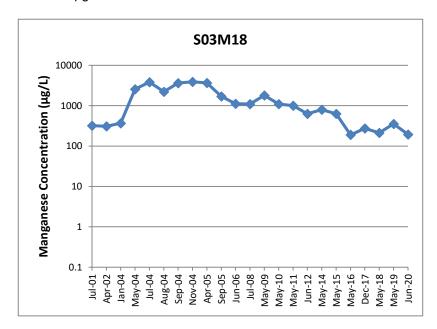

Arsenic MCL/PRG = $10 \mu g/L$

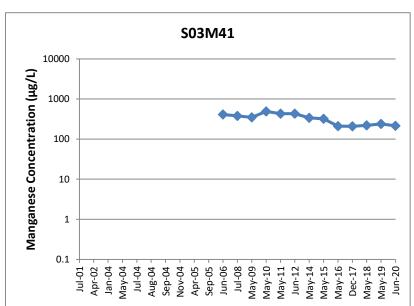


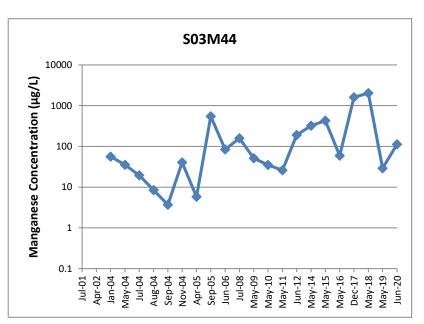


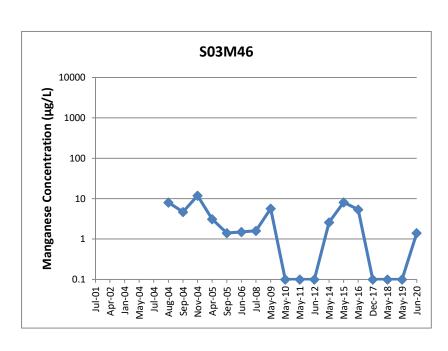


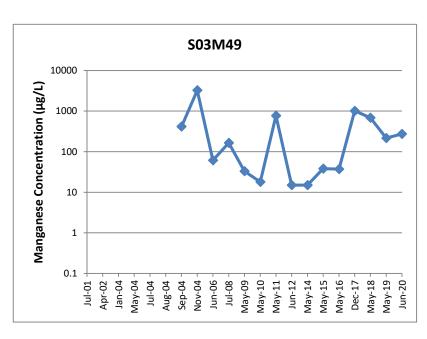


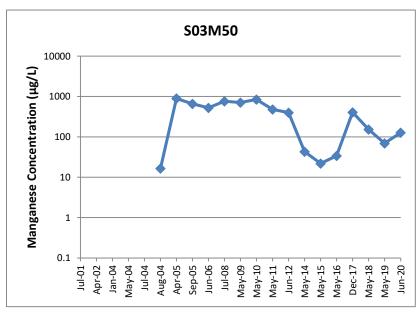


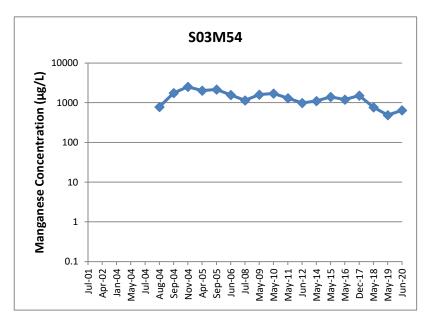


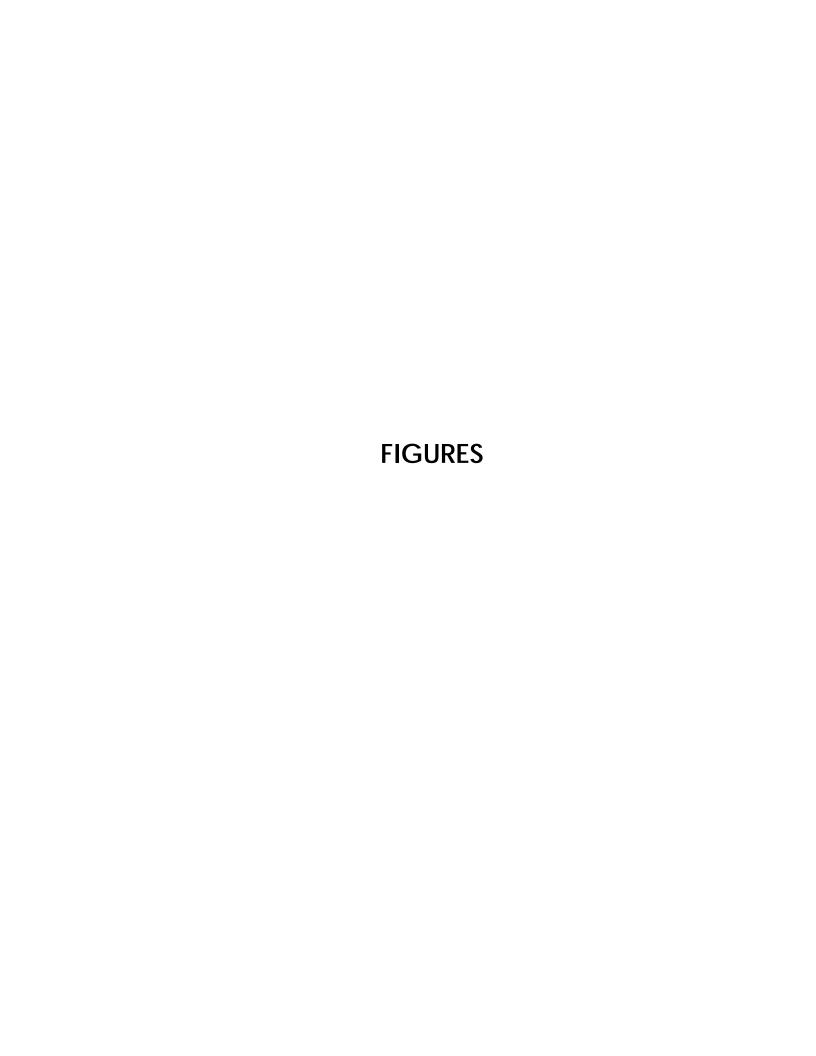

Graph 6-13
Site 3 Groundwater Trends - Manganese
Site 3 - Ball Road Landfill and Burn Pits
Naval Support Activity, Mechanicsburg, Pennsylvania

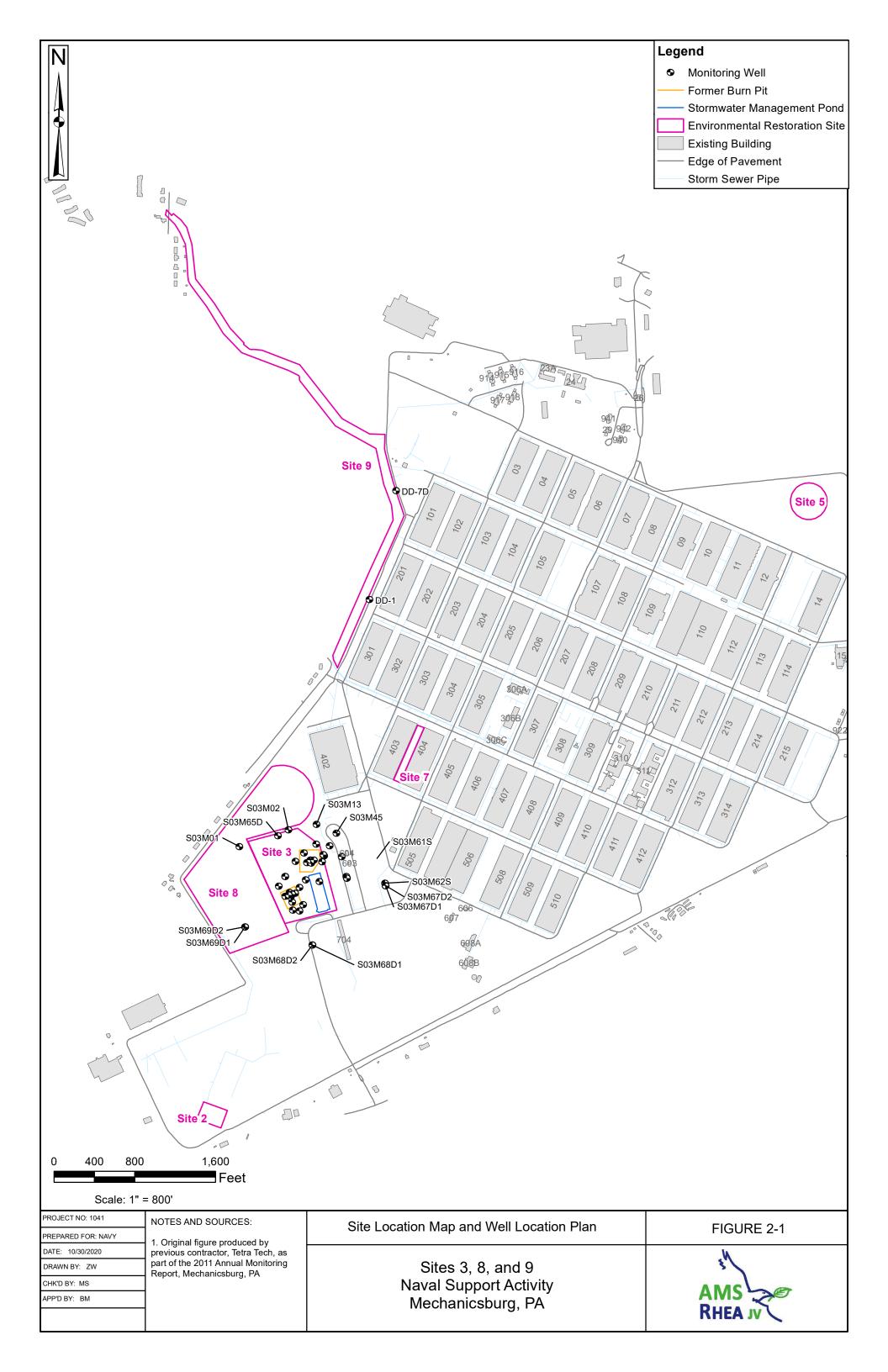

Manganese MCL/PRG = 314 μ g/L

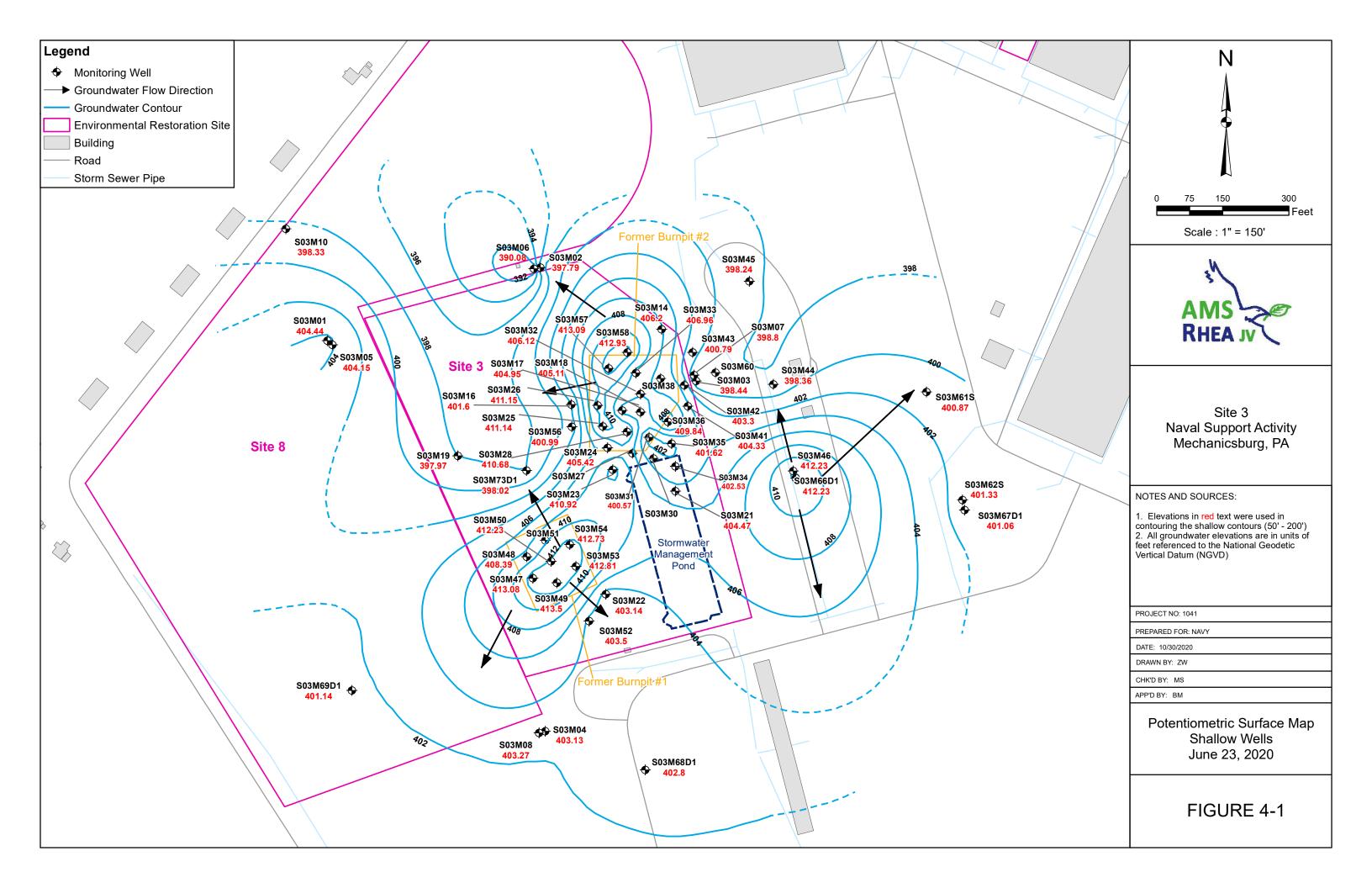


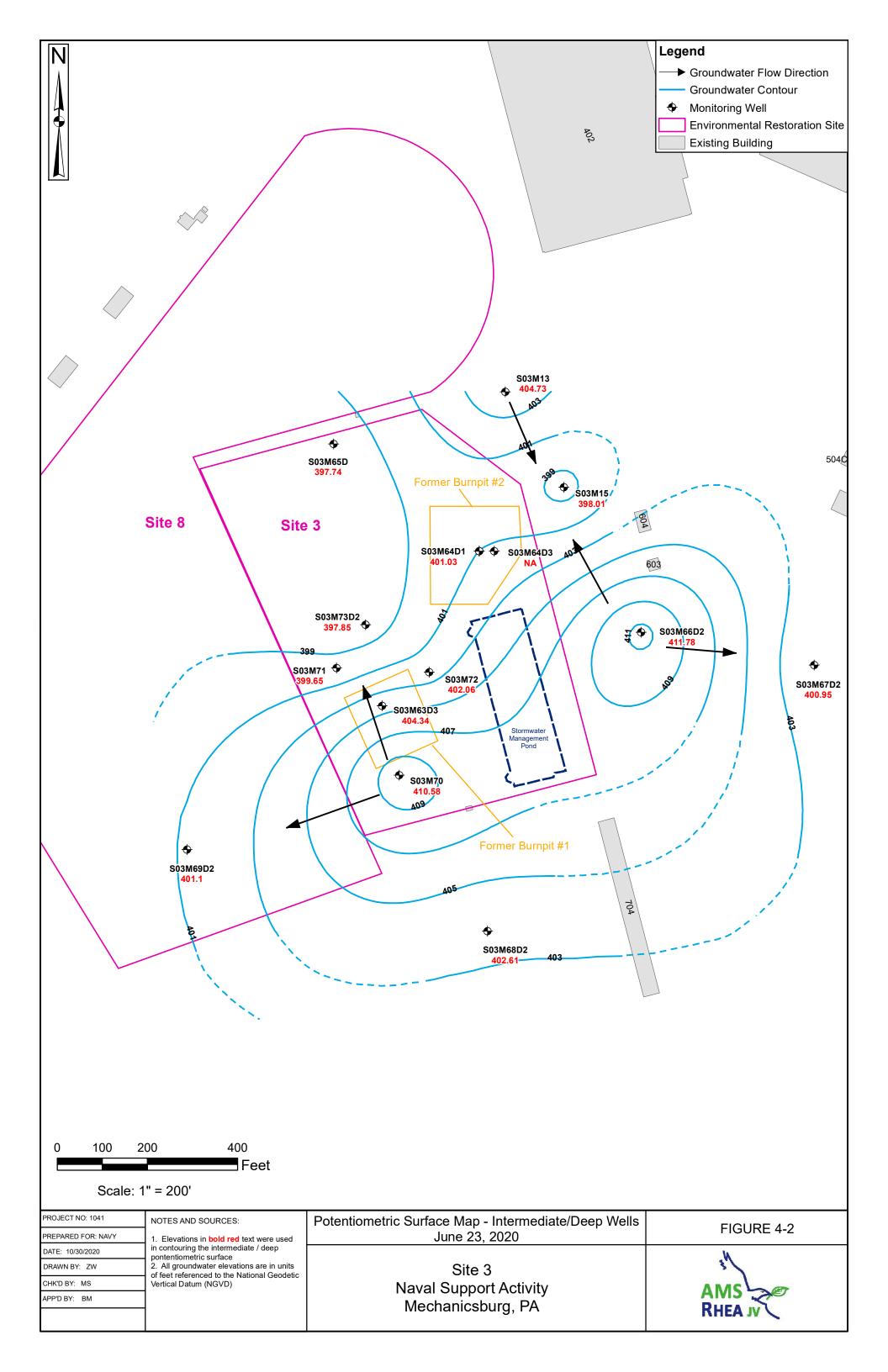


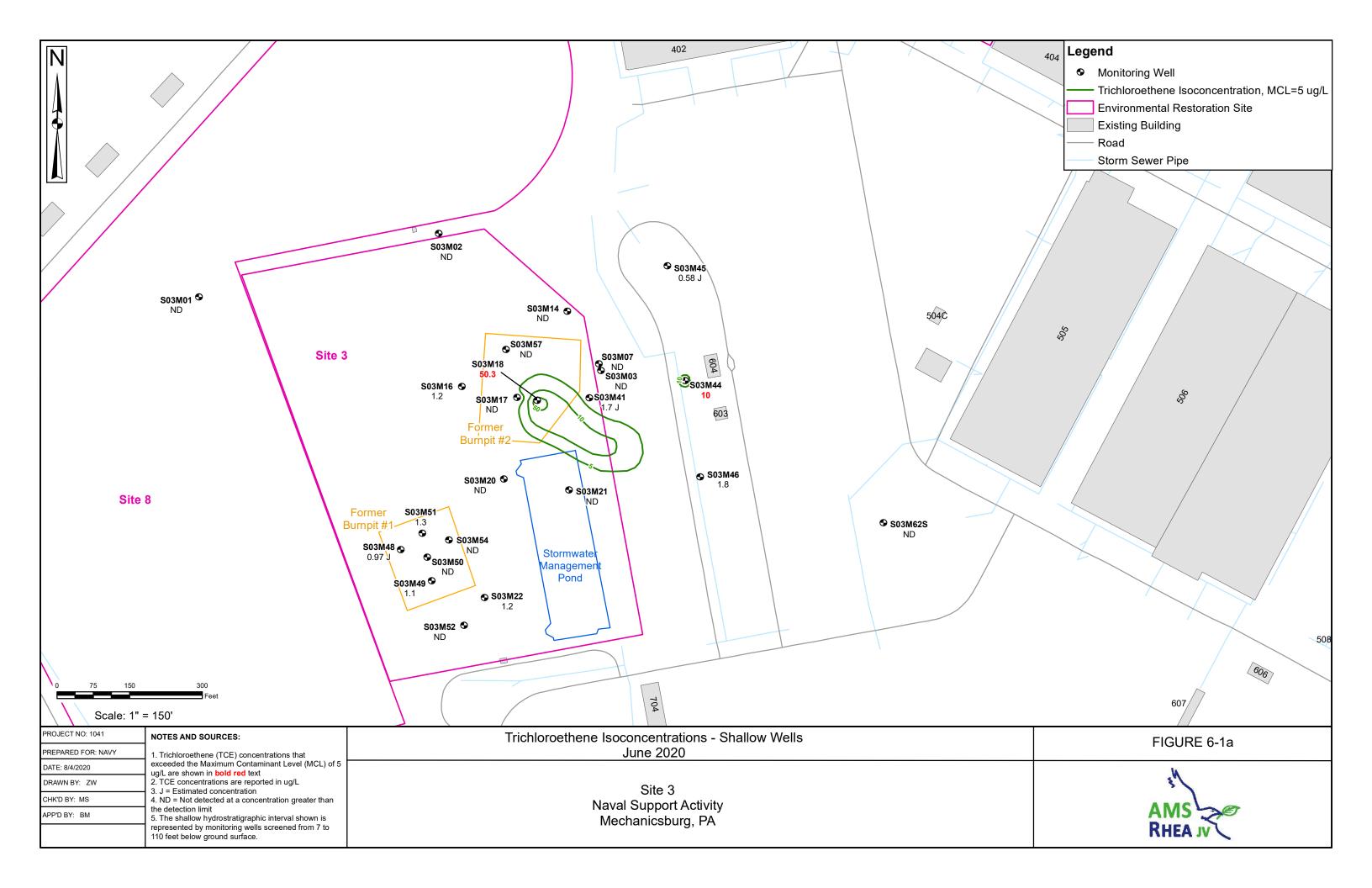


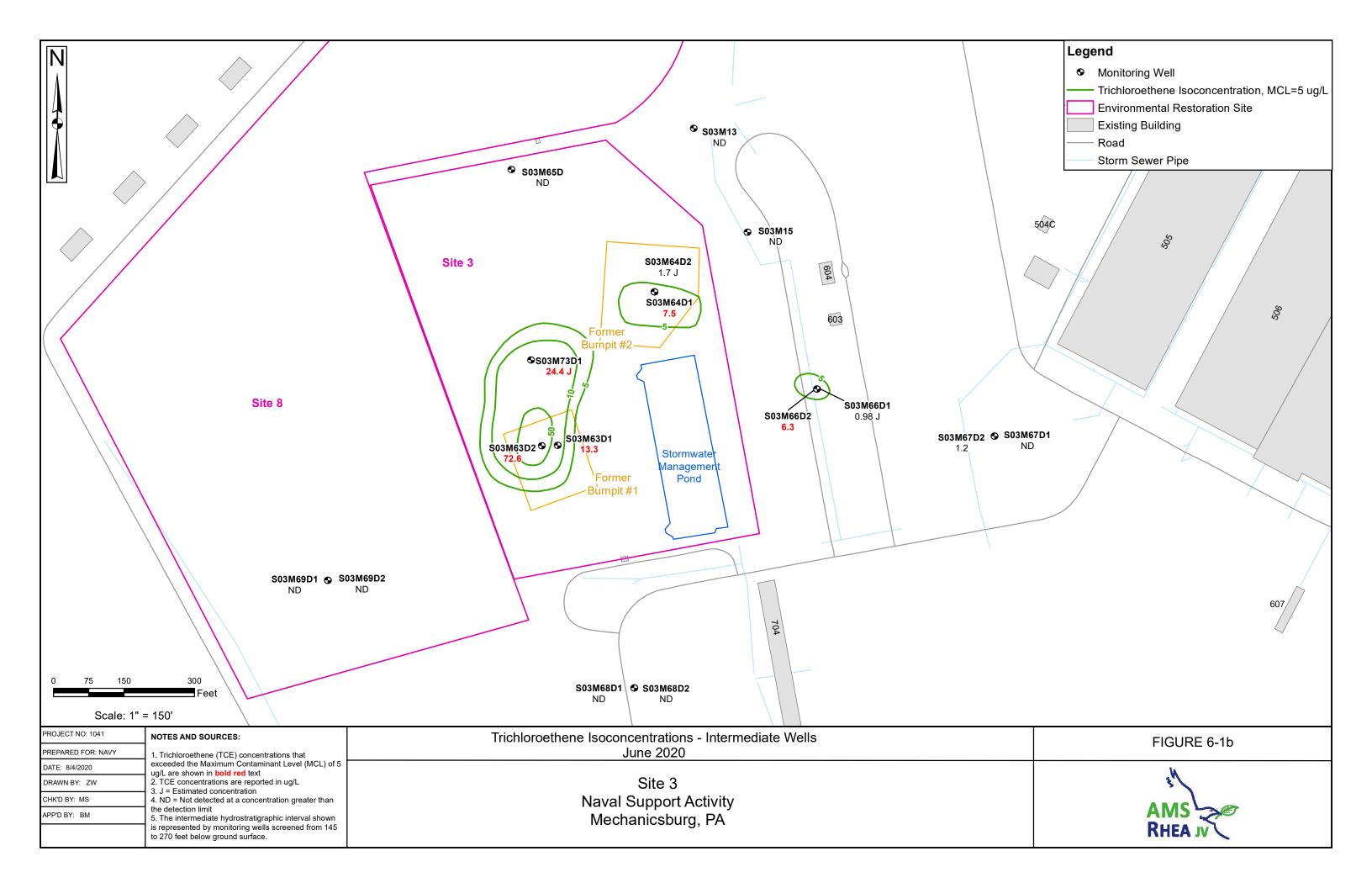


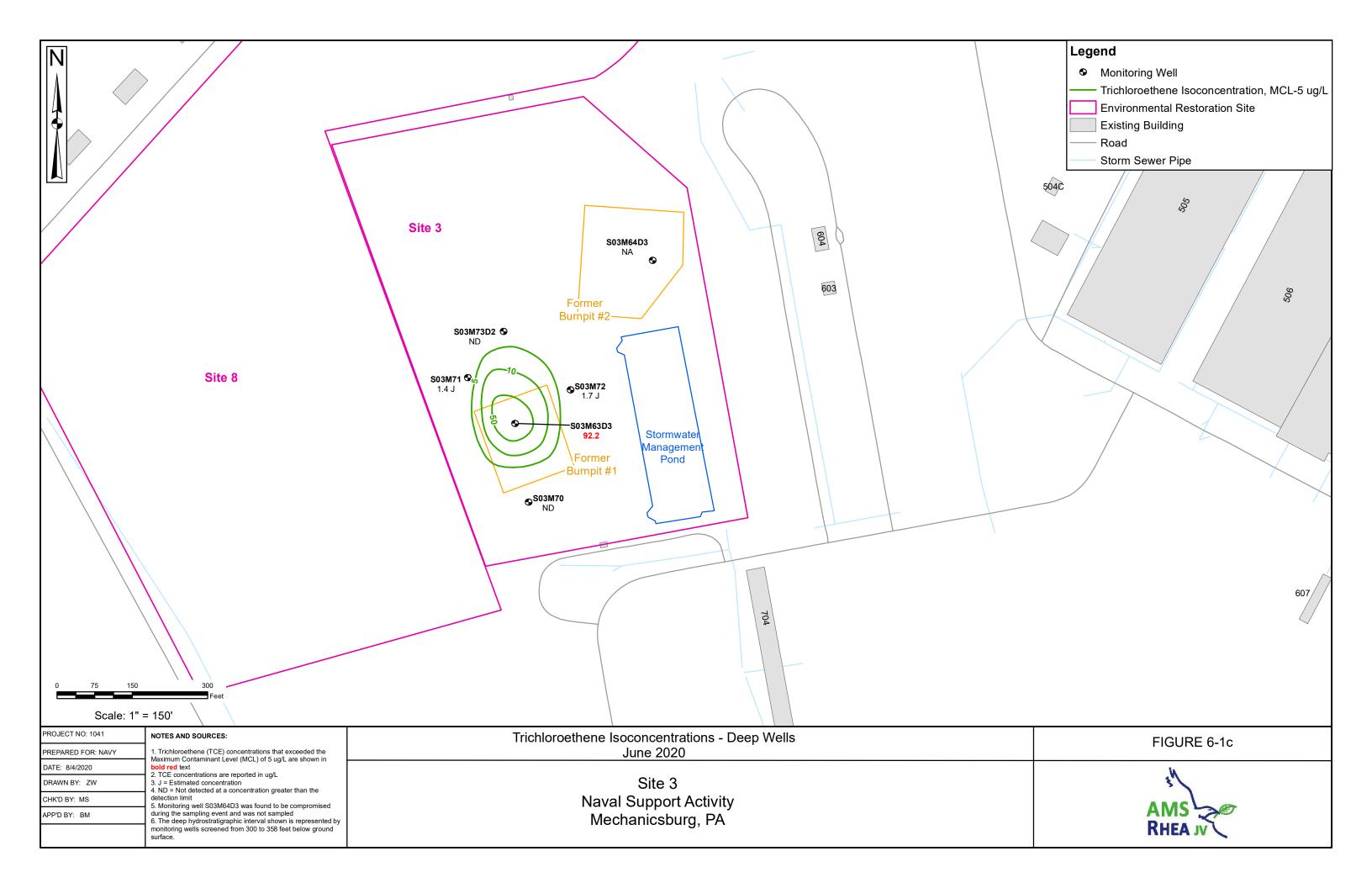




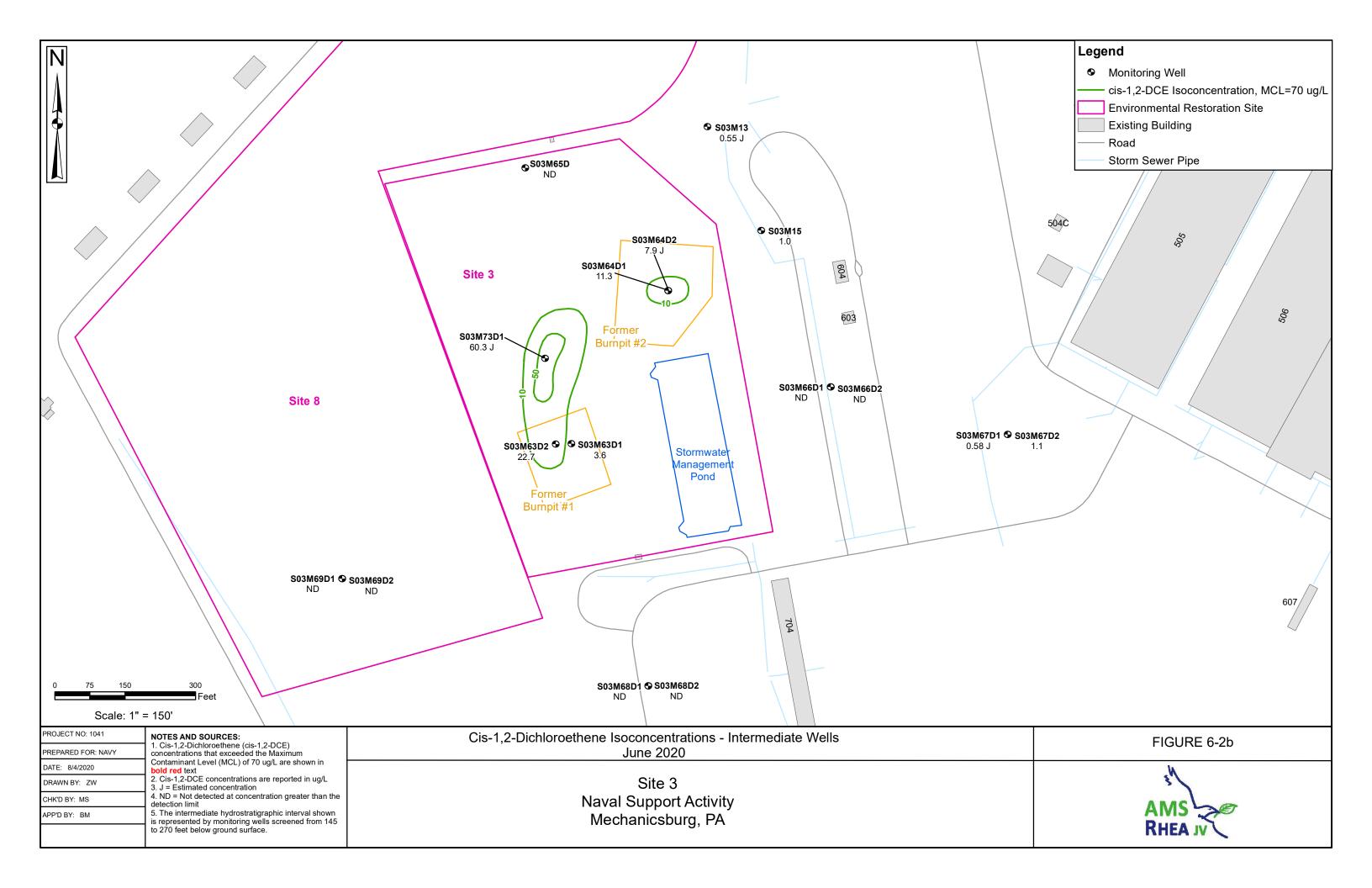


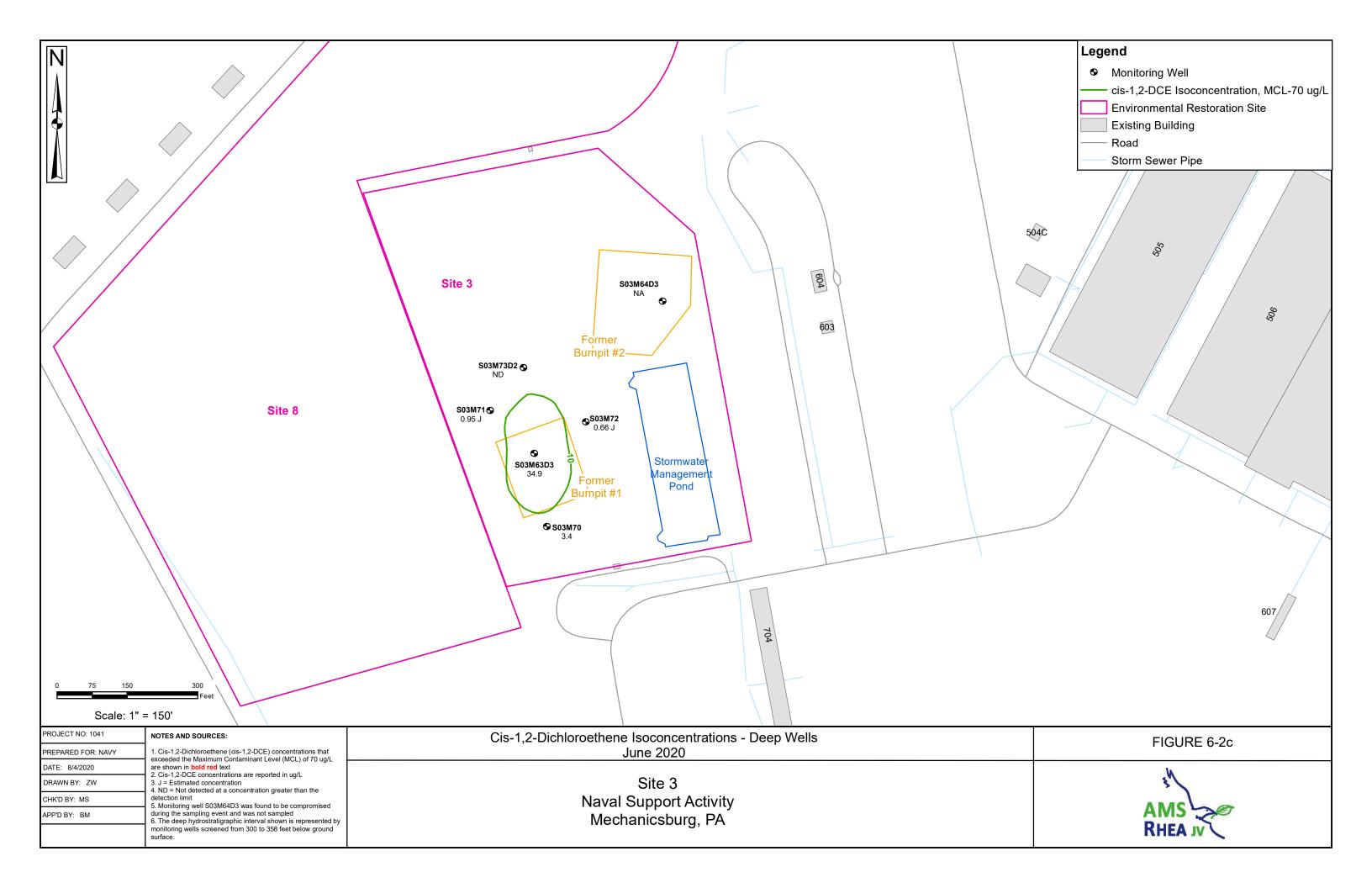


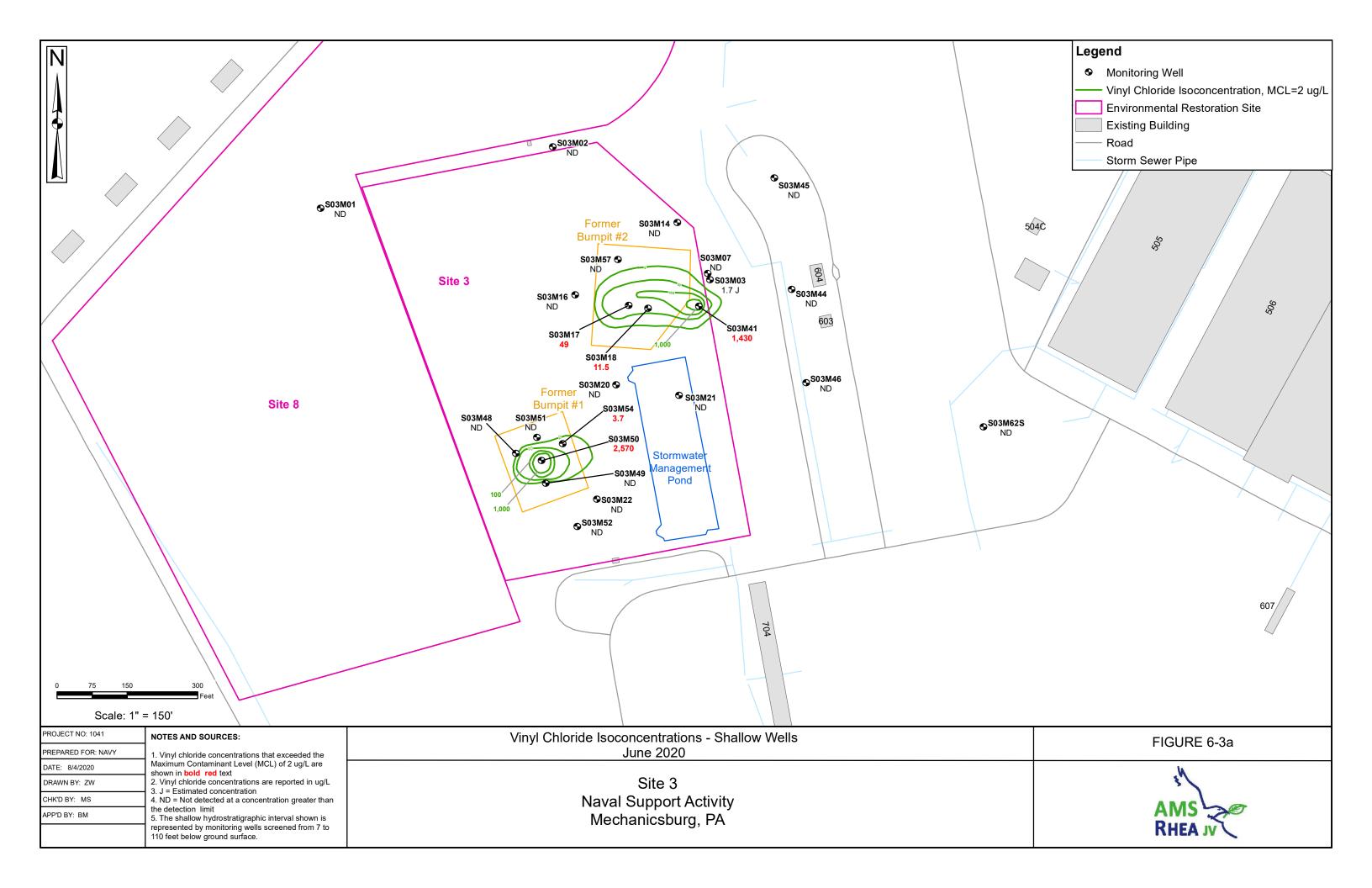


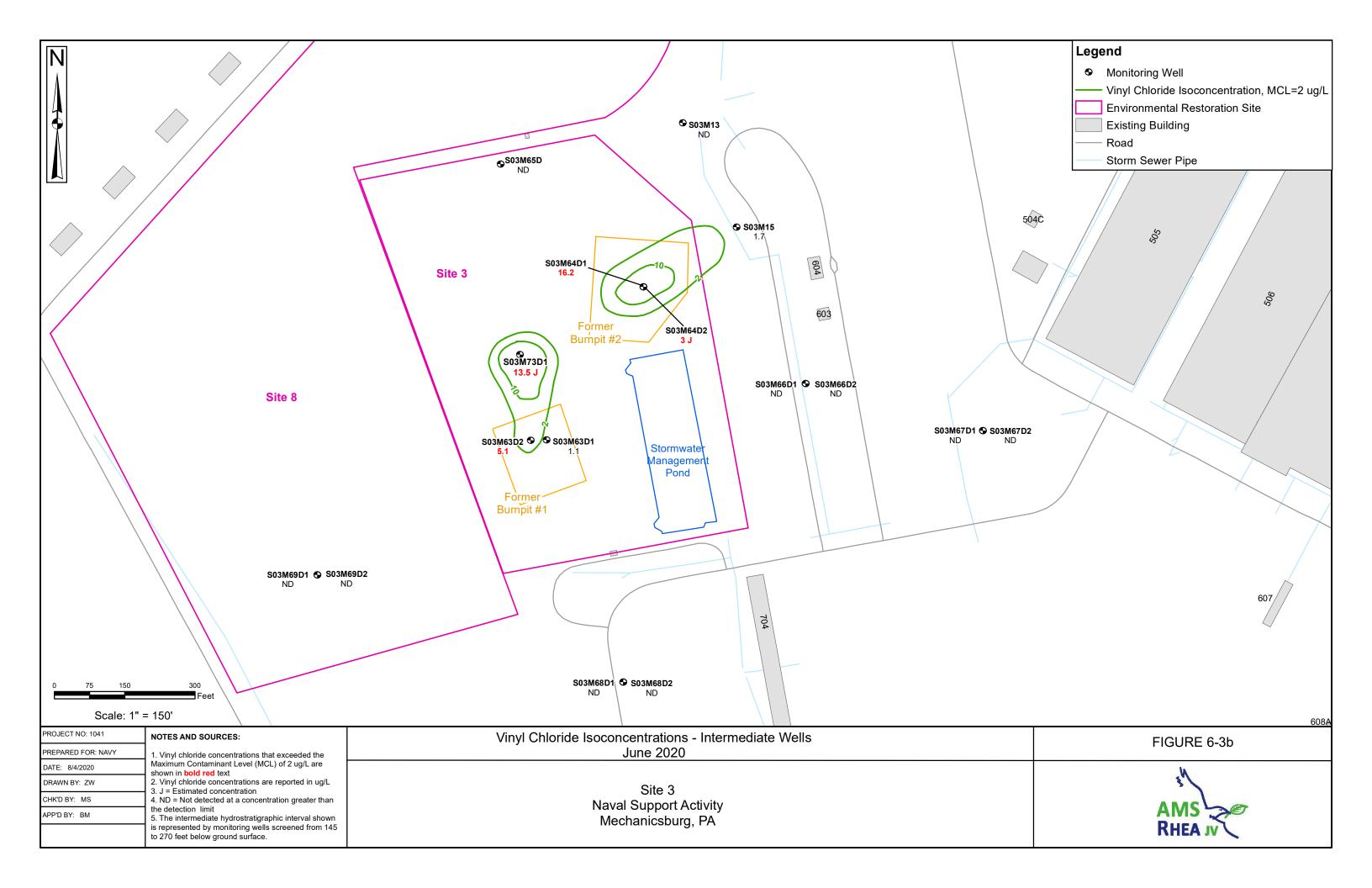


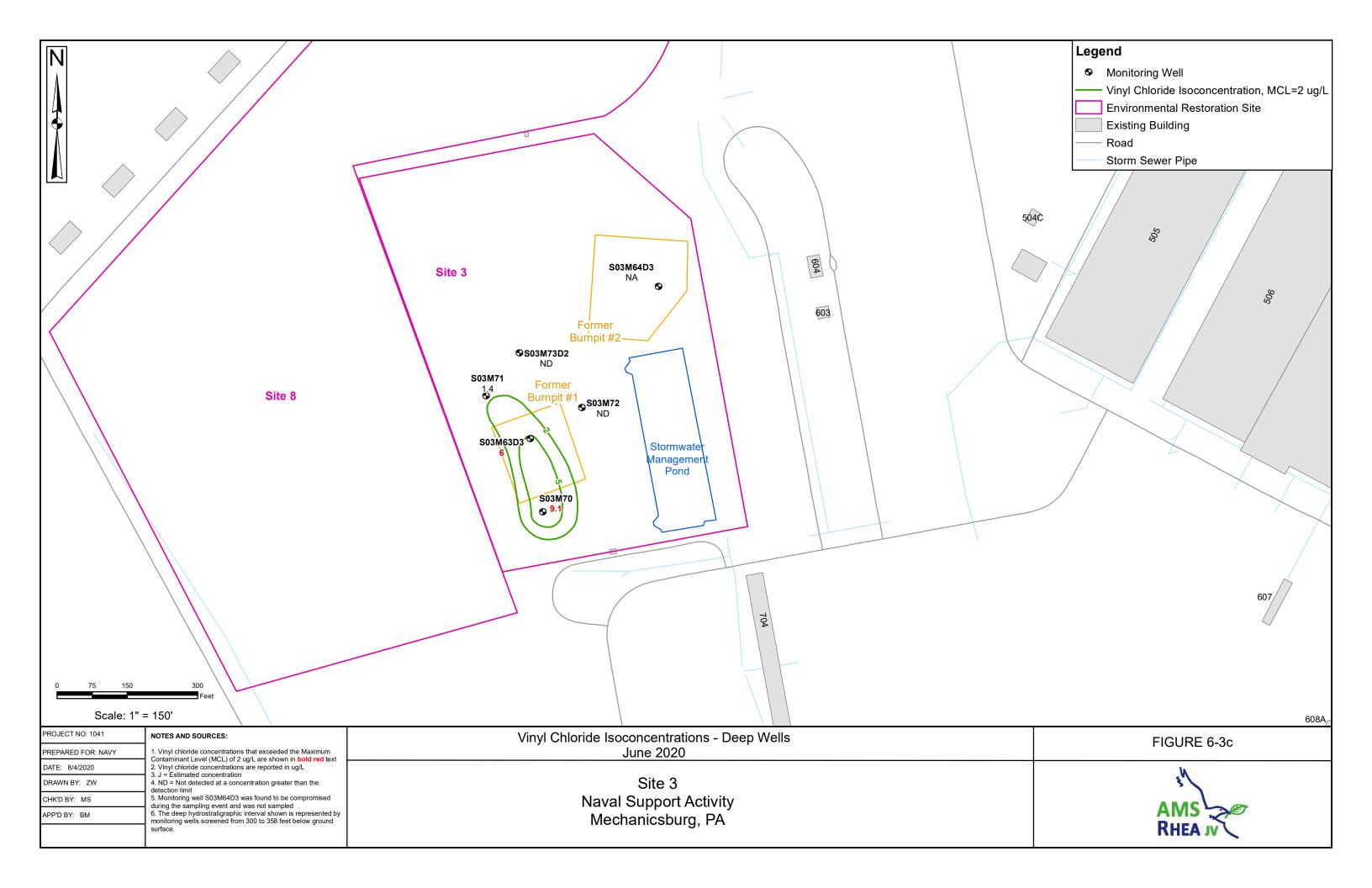


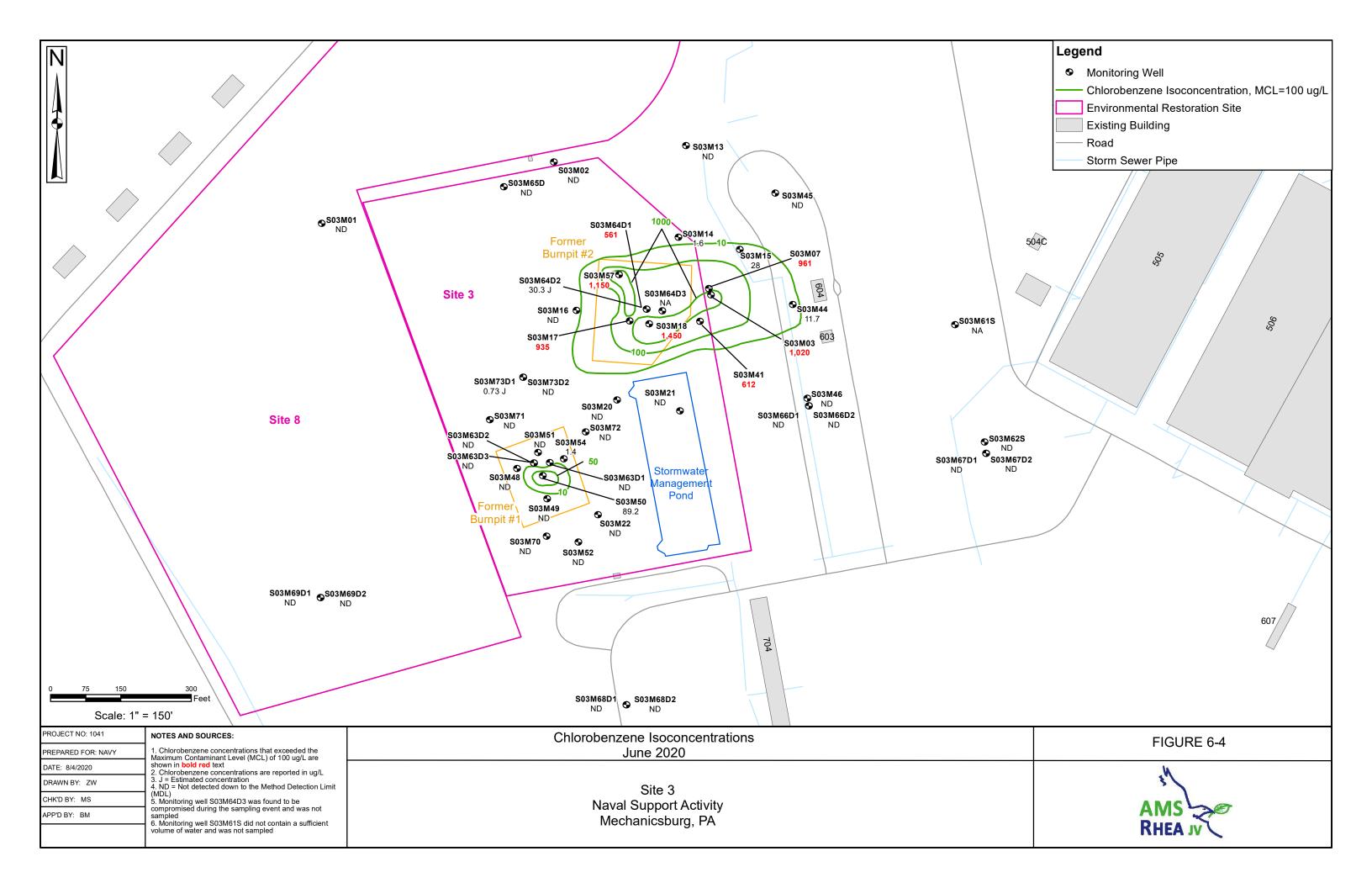


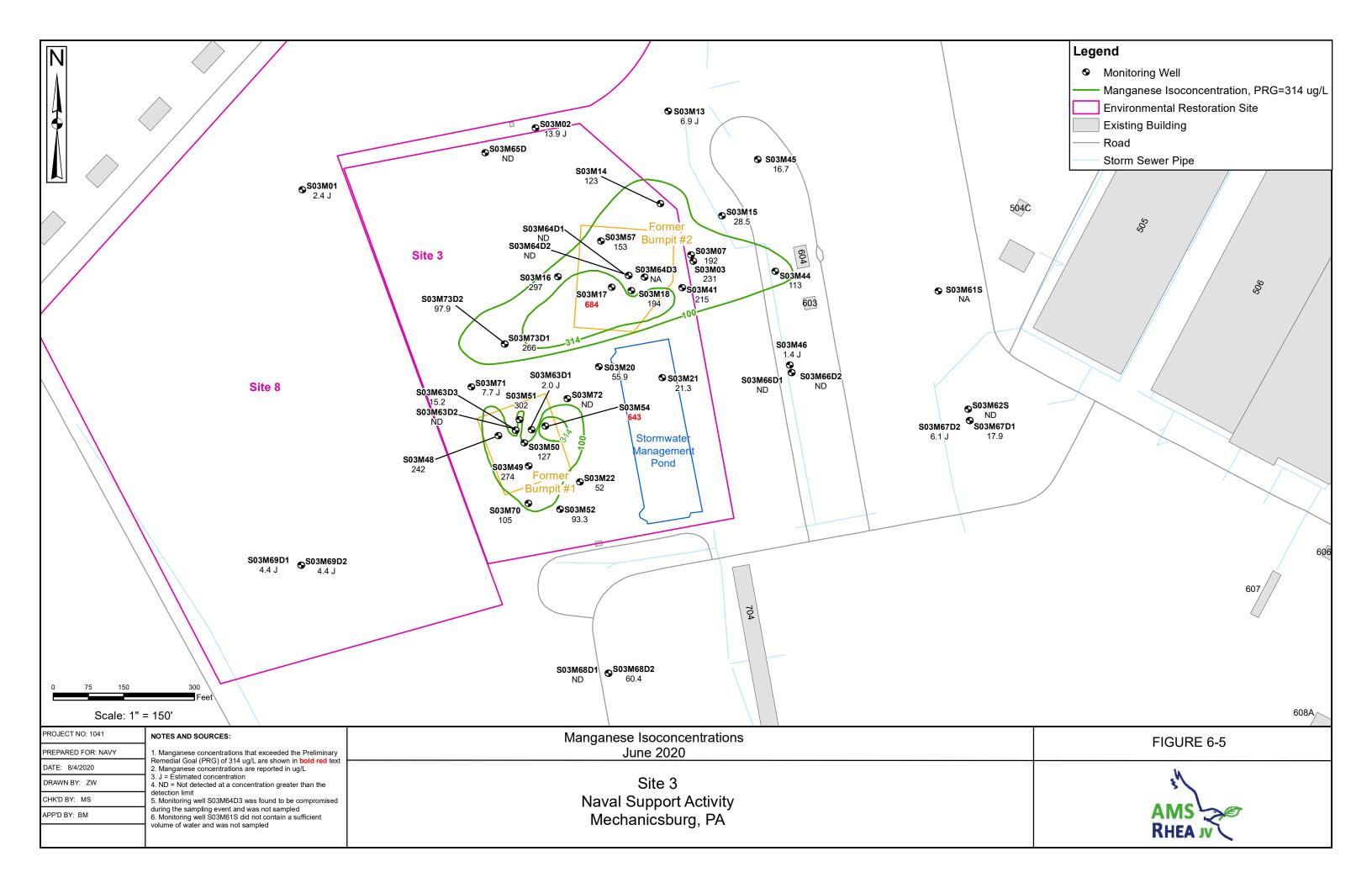


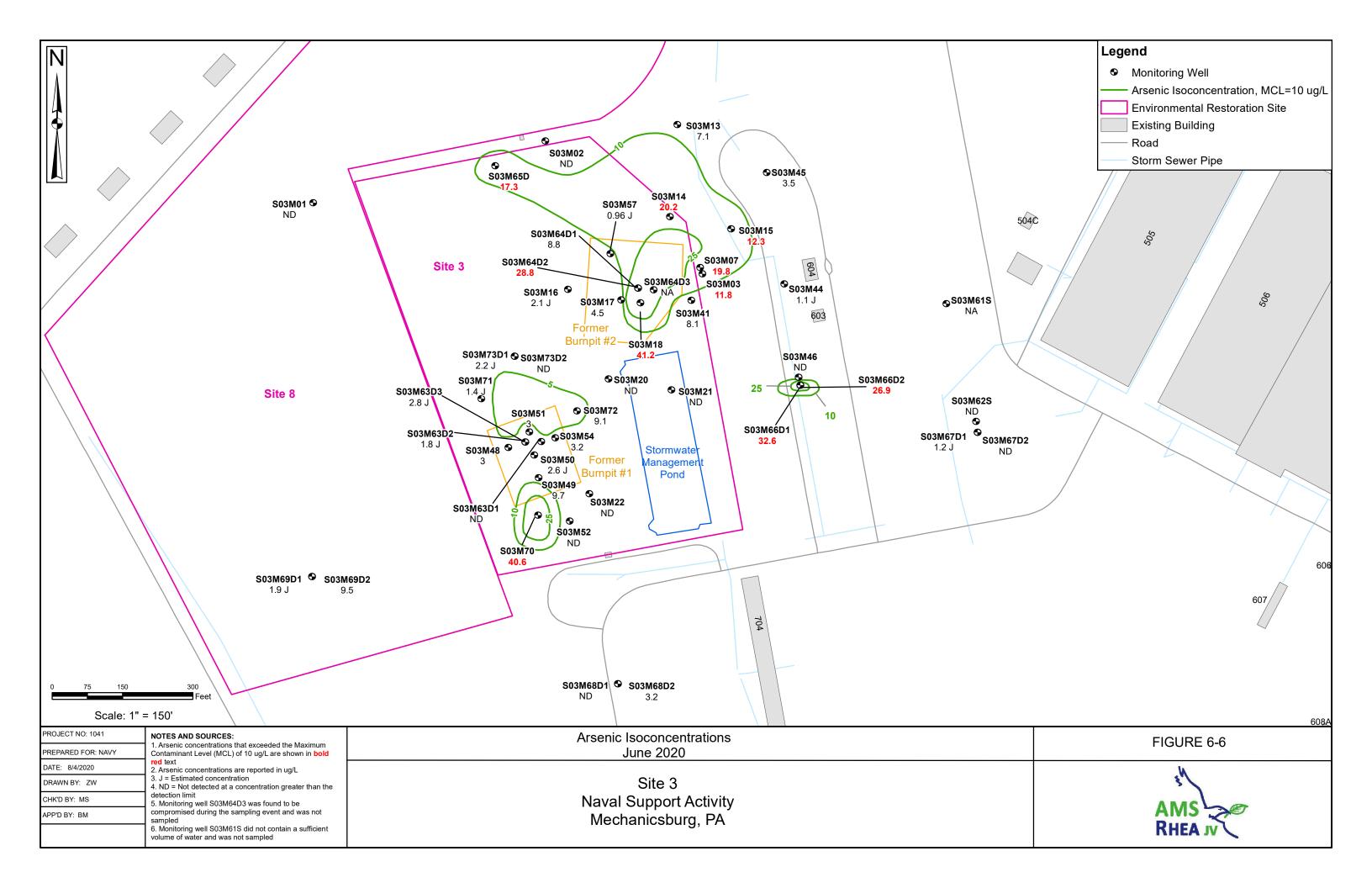


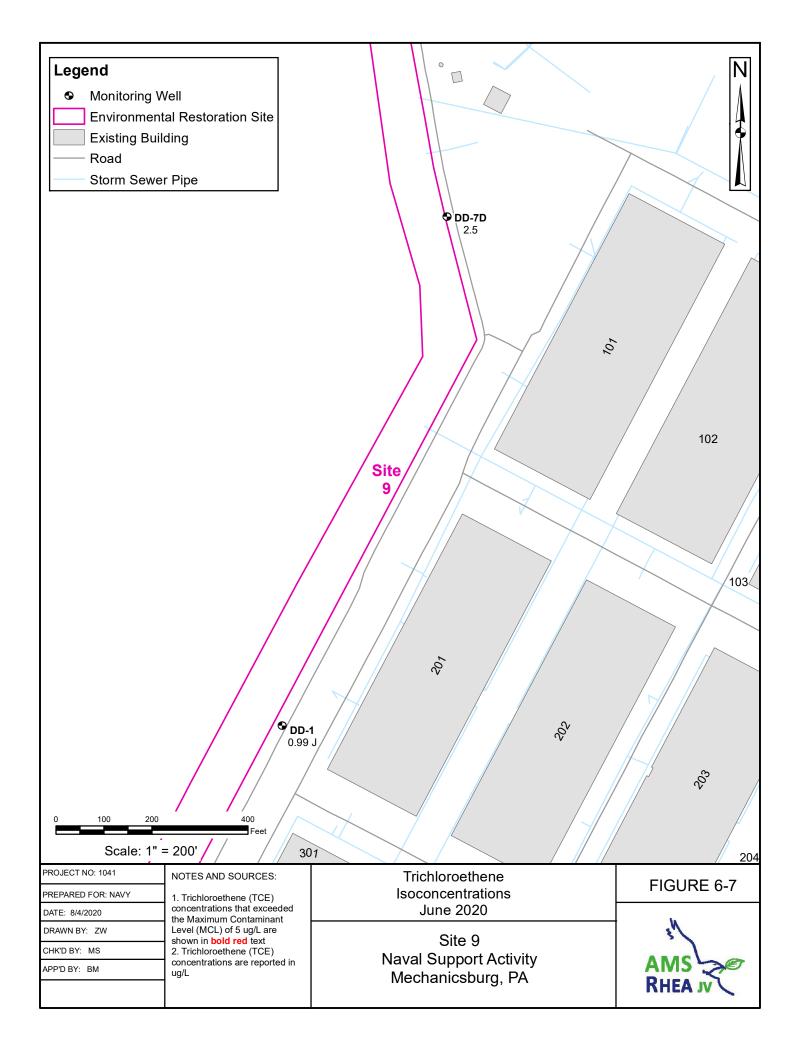


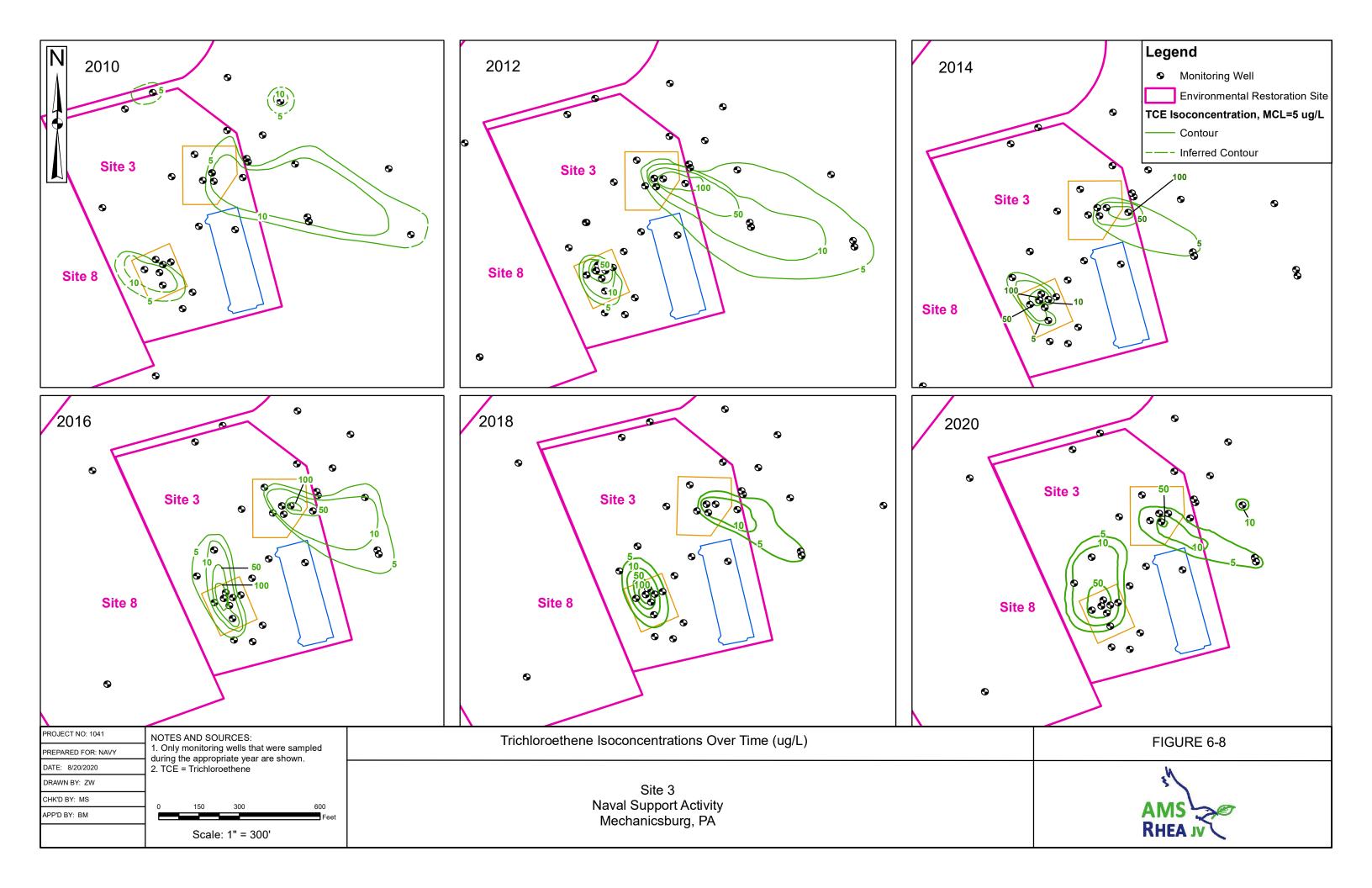


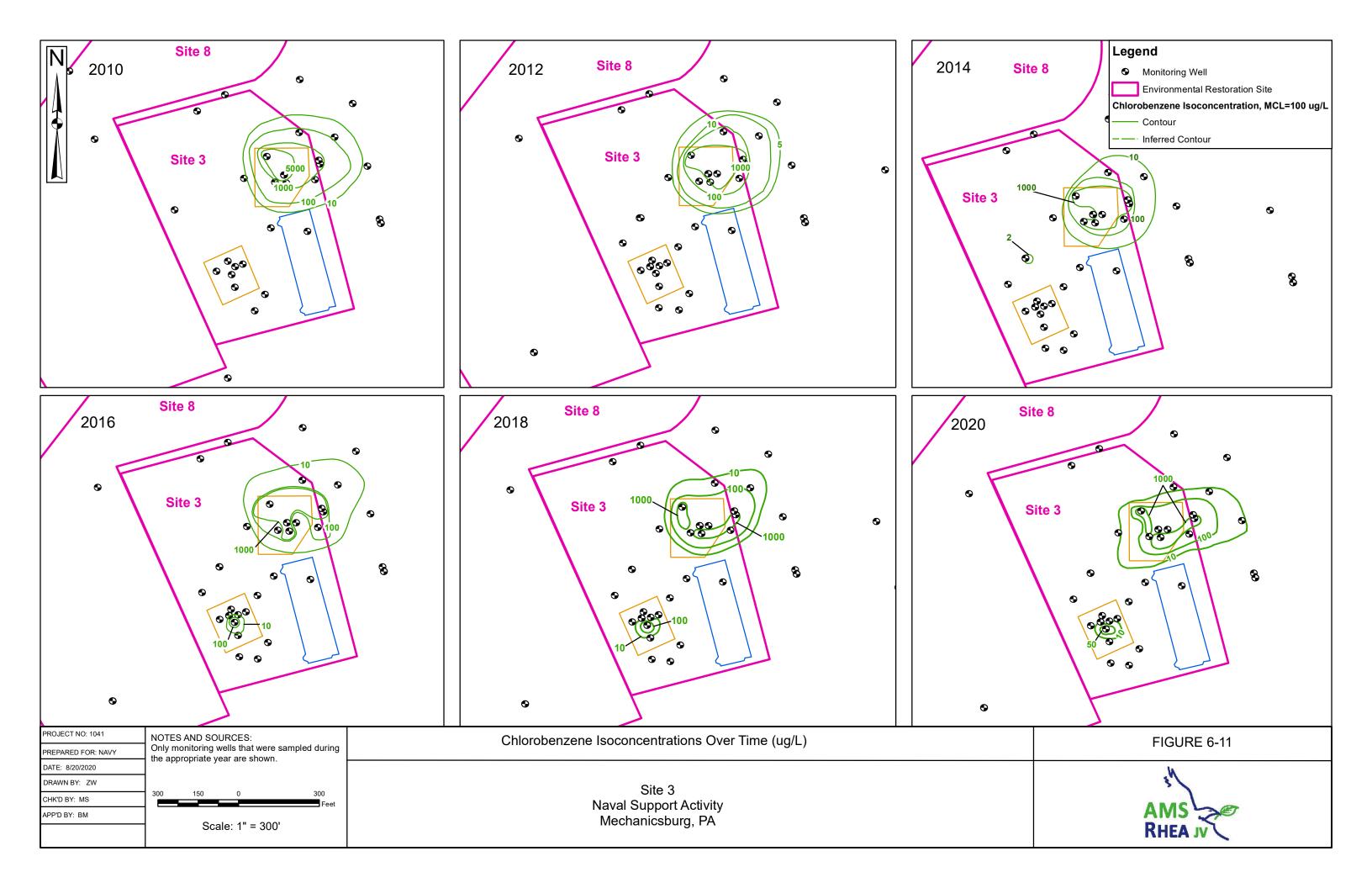


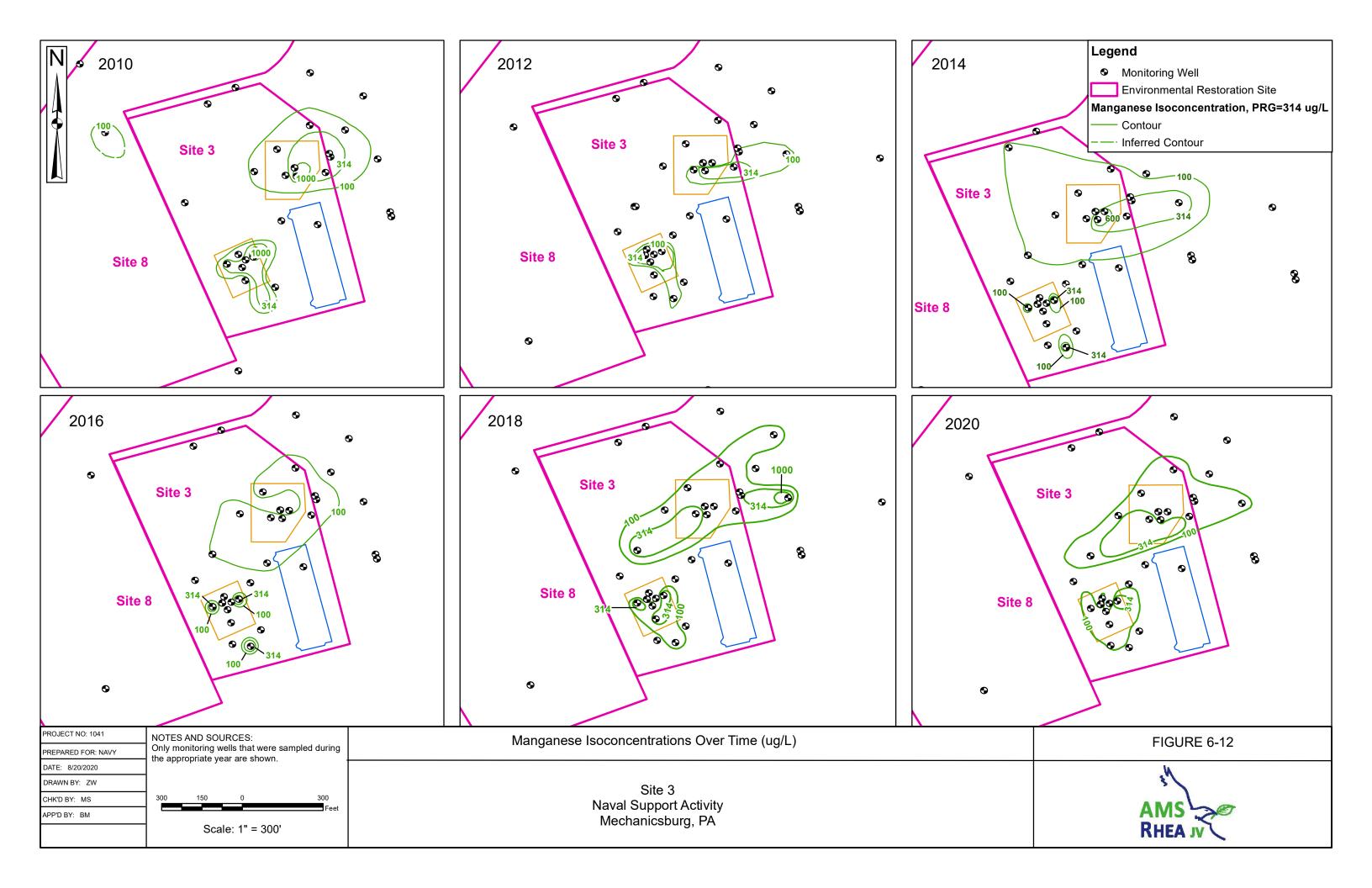


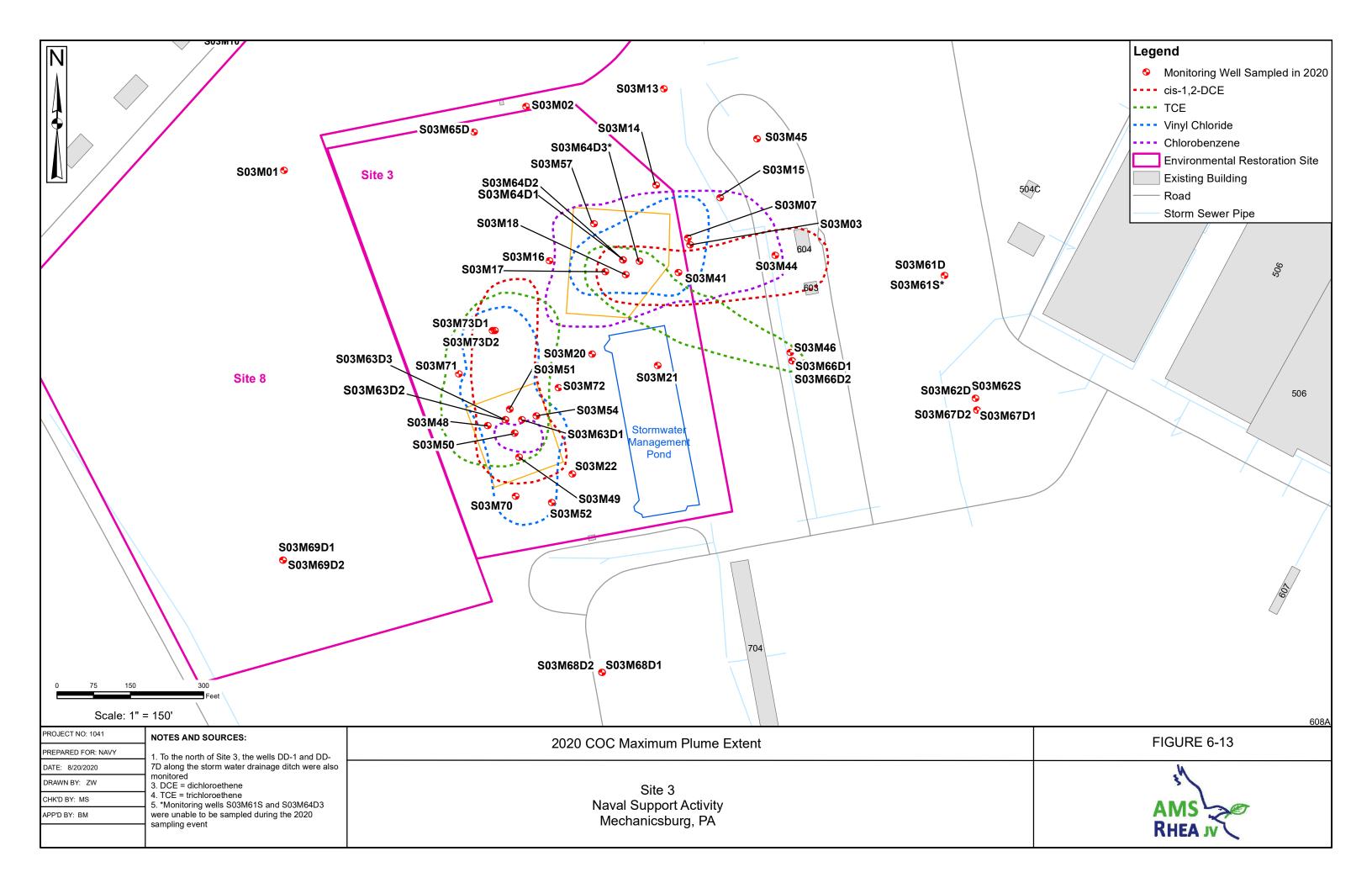












APPENDIX A

Field Forms

APPENDIX A-1 Water Level Sheets

MONITORING WELL **GAUGING SHEET**

Monitoring Well Identification	Time	Date	Sounded Depth (feet below TOR)	Depth to Water (feet below TOR)	Notes
S03M01	16:22	6/22/2020	58.50	25.58	
S03M02	11:55	6/22/2020	77.05	32.42	6 3/8" ID Steel
S03M03	12:47	6/22/2020	55.10	31.02	Removed sock, weathered, breaking down.
S03M04	13:00	6/23/2020	57.22	31.56	
S03M05	16:18	6/22/2020	112.60	26.45	
S03M06	12:04	6/22/2020	132.40	39.48	
S03M07	12:15	6/22/2020	106.85	31.05	
S03M08 S03M10	11:12 16:28	6/22/2020	109.10 111.05	30.58 23.52	4" ID PVC
S03M11	9:55	6/22/2020 7/1/2020	97.00	26.67	4 IDFVC
S03M11 S03M13	12:34	6/22/2020	250.18	23.61	
S03M14	12:10	6/22/2020	99.90	21.22	4 " ID PVC
S03M15	9:00	6/22/2020	254.00	30.31	, 151.0
S03M16	10:40	6/23/2020	147.40	25.71	
S03M17	12:00	6/23/2020	107.34	22.05	
S03M18	13:00	6/23/2020	107.21	22.54	
S03M19	10:00	6/23/2020	61.57	35.68	
S03M20	11:05	6/23/2020	100.52	2.71	
S03M21	9:50	6/22/2020	83.90	22.62	8.25" ID Steel
S03M22	17:15	6/22/2020	95.63	25.96	
S03M23	11:25	6/23/2020	100.32	16.39	
S03M24	11:15	6/23/2020	96.01	21.87	
S03M25 S03M26	11:30 11:39	6/23/2020 6/23/2020	90.71 69.99	16.03	
S03M26 S03M28	11:39	6/23/2020	69.99 98.78	15.64	
S03M28 S03M29	12:15	6/23/2020	98.78	16.03 17.94	
S03M29 S03M30	9:48	6/23/2020	21.21	17.94	Well is damaged
S03M30	12:10	6/23/2020	84.42	26.55	well is damaged
S03M32	13:15	6/23/2020	93.90	20.87	
S03M33	13:30	6/23/2020	74.39	20.16	
S03M34	9:55	6/22/2020	99.30	23.77	5.25" ID steel
S03M35	13:34	6/22/2020	68.00	25.49	Located on edge of sink hole in lot
S03M36	13:22	6/22/2020	26.10	17.52	2" ID PVC
S03M37	13:26	6/22/2020	14.50	DRY	
S03M38					
S03M41	13:16	6/22/2020	91.10	23.30	2" ID PVC
S03M42	13:02	6/22/2020	73.48	24.10	2" ID PVC - Petroleum odor
S03M43	12:38	6/22/2020	97.10	28.83	
S03M44	8:58	6/24/2020	97.00	33.17	2" ID PVC
S03M45	8:50	6/23/2020	67.90	33.94	5.5" ID steel
S03M46	9:01	6/23/2020	107.70	18.91	5.5" ID steel
S03M47	9:10	6/23/2020	96.86	17.81	open borehole
S03M48	9:00	6/23/2020 6/23/2020	99.00	22.66	A 1't
S03M49 S03M50	9:15 9:10	6/23/2020	89.20 98.02	16.51 17.84	soft sediment open borehole
S03M50 S03M51	9.10 		76.02	17.04	Inaccessible - Covered by trailer
S03M52	7:30	6/23/2020	83.80	26.51	indecessione Covered by trainer
S03M53	15:55	6/22/2020	60.52	16.58	open borehole
S03M54	5:15	6/23/2020	92.81	16.71	open borehole
S03M55	8:00	6/23/2020	DRY	DRY	•
S03M56	10:45	6/23/2020	100.29	26.24	open borehole
S03M57	11:45	6/23/2020	99.21	14.22	open borehole
S03M58	14:00	6/23/2020	89.05	14.52	
S03M60	16.40		117.10	20.20	Inaccessible - overgrown vegetation
S03M61D	16:48	6/22/2020	117.10	28.20	2" ID PVC 2" ID PVC
S03M61S S03M62D	16:40 16:56	6/22/2020 6/22/2020	35.10 117.15	26.51 26.43	2" ID PVC 2" ID PVC
S03M62D S03M62S	17:00	6/22/2020	43.28	26.44	2" ID PVC
S03M63D1	16:10	6/22/2020	241.11	20.23	2 10110
S03M63D2	16:32	6/22/2020	332.00	31.63	
S03M63D3	16:27	6/22/2020	270.00	25.85	
S03M64D1	13:05	6/23/2020	180.65	26.32	
S03M64D2	13:08	6/23/2020	216.82	30.70	
S03M64D3	13:20	6/23/2020	322.70		Obstruction at 101 ft TOR
S03M65D	9:50	6/23/2020	227.50	30.68	
S03M66D1	9:10	6/23/2020	187.90	18.72	2" ID PVC
S03M66D2	9:14	6/23/2020	207.90	19.19	2" ID PVC
S03M67D1	17:05	6/22/2020	162.80	26.68	
S03M67D2	17:05	6/22/2020	247.23	26.60	
S03M68D1 S03M68D2	17:15 17:18	6/22/2020	181.62 247.74	26.61 26.81	
S03M68D2 S03M69D1	16:05	6/22/2020 6/22/2020	193.11	37.18	
S03M69D1 S03M69D2	16:05	6/22/2020	227.01	37.11	
S03M69D2 S03M70	15:35	6/22/2020	349.93	19.35	
S03M70 S03M71	16:35	6/22/2020	350.22	32.70	
S03M71	8:48	6/23/2020	349.05	26.38	
S03M72 S03M73D1	10:30	6/23/2020	188.32	31.29	
S03M73D2	10:35	6/23/2020	350.01	31.44	
_ 301.1,022 =		+			
DD-1	15:40	6/22/2020	55.10	23.54	4" ID PVC

Signature:

Date: 7/20/2020

APPENDIX A-2

Field Log Sheets

Site:	NSA Mechanicsburg	Tubing Diameter:	
Project No.:	1041	Depth to Groundwater:	27.95
Sampling Device:	Bladder pump	Well Depth:	59.1
Date:	7-1-2020	Feet of Water:	31.14
Well I.D.:	503MOI	Volume of Water in Well:	

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance (/)	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
10:53	27.95	665	0.871	16.97	11.25	9.65	124.5
11:00	27,95	6.75	0.824	17.55	9.49	9, 18	117.7
11:05	27.95	6.84	0.820	14.16	9.83	8.12	114.9
11:16	27.95	6.90	0.802	13.48	9.38	7.05	110.9
11:15	27. Ole	6.96	0.804	13.70	8.71	6.13	105,4
11:00	27.96	6.98	0.865	13.70	8.36	6.10	103.4
11:25	22.96	6.97	6.797	13.48	817	6.01	104.4
11:30	27.96	6.98	0,797	13.50	8.09	5.81	103.9
						-	
			-				
					_		

Purge Start Time: Purge End Time:	10:55	Approx. Purge Rate: Approx. Well Volume:	210 ml/min
Sampler:	I. Ferguson	Total Volume Purged: Well Volume (gal.) (2" well)= (fi	7,350 mc of water)(0.163)
Weather:	88-96° Sunny		
Comments:			
Signature:	RAZ	Date: 7-/	1- 2010

admin/forms/environmental/Low Flow Purging Form

AMS RHEA JV

admin/forms/environmental/Low Flow Purging Form

Site:	NSA Mechanicsburg	Tubing Diameter:		
Project No.:	1041	Depth to Groundwater:	32.86	
Sampling Device:	Bladder pump	Well Depth:	77.8	
Date:	6/29/2020	Feet of Water:	4494	
Well I.D.:	503H-107	Volume of Water in Well:		

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance (/)	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
13:40	32.86	6.60	0.895	19.13	11.43	9.55	124.1
13:45	32.86	6.96	0.846	17.10	11.43	986	111.3
13:50	3286	7.21	0.835	17.66	10.59	15.2	1013
13:55	32-86	7,27	6.833	17.08	10.83	13.9	106,6
14:00	32.86	7.31	6.832	17.04	10.52	11,0	12 Y
14105	32.86	7.36	0.839	17.16	17.10	10.9	98.9
14:10	32.86	7.42	0.837	17.15	11.01	10.9	98.5
19:15	32.06	7.52	6.824	17.15	11.39	16.7	924
							·
	ž						
					-		
			1				
					1		 -
5. *					1		
	_ = - ****						
	1 11			*			

Purge Start Time: Purge End Time: Sampler:			Approx. Purge Rate: Approx. Well Volume Total Volume Purged:	1/- 6.7)
Weather:	89-90 5	ing.	wen volume (gal.) (2" v	vell)= (ft of water)(0.163)
Signature:	7		Date:	6/24/20

Site:	NSA Mechanicsburg	Tubing Diameter:	
Project No.:	1041	Depth to Groundwater:	3/25
Sampling Device:	Bladder pump	Well Depth:	57
Date:	6-29-2020	Feet of Water:	25.75
Well I.D.:	503M03	Volume of Water in Well:	

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
7:05	31.25	6,68	0.648	20.16	19.31	16.25	- 108, 5
730	31.38	6.72	0.595	16.49	5,16	11.40	-1053
7:15	31 10	6.77	0.586	16.03	5.70	9.68	-167.5
7,20	31.40	6.81	0.583	15.81	3.09	9.91	-1019
7:35	31.45	6.85	0.579	15.62	2.40	7.97	-107.7
7:30	31.46	6.88	0.578	15.59	2.15	9,76	-1667
7:35	31.42	6.90	0.57%	15.54	2.00	9.80	-1061
7:46	31.47	6.91	0.579	15.54	1.99	9.81	-106.3
		· · · · · · · · · · · · · · · · · · ·	,				
-							
				<u>, </u>	<u> </u>		

Purge Start Time: 19:05	Approx. Purge Rate: Approx. Well Volume:	7/6 ml/min	
Purge End Time: 19,40 Sampler: Thyw	Total Volume Purged:	6.31	
Weather: 81-90 5 Junuary	Well Volume (gal.) (2" well)= (ft of wate	r)(U.163)	
Comments:			
Signature: $-/2/$	Date: 6/29/2	0	

Site:	NSA Mechanicsburg	Tubing Diameter:	
Project No.:	1041	Depth to Groundwater:	31.25
Sampling Device:	Bladder pump	Well Depth:	106
Date:	6-29-2020	Feet of Water:	74.75
Well I.D.:	503MO7	Volume of Water in Well:	

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance (/)	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
15:20	30.25	7.16	0.633	_ 33.26	14.78	8.78	-154.2
15:25	31.51	7.24	0.612	22.61	8.97	9,25	-162.2
15:30	31.65	7.25	8.603	21.84	6.18	10.38	-138.6
15135	31.75	7.28	0594	21.66	4.42	11.42	-117.5
15140	31.87	7.29	0,589	21.54	5.26	12.38	-107.6
15:45	31.84	7.36	0.601	22,25	5.28	12.48	-93.4
15:50	31.84	7.38	0.595	31,74	1.32	14,44	-85.4
15158	31.84	7.30	0.580	20,68	5.39	14.58	-88.9.
16:00	31.84	7.31	0.582	26.94	5.40	14.41	-89.6
	,		<u> </u>				
	-		 				
	1		1				
	 						·
		-			<u> </u>		

Purge Start Time: Purge End Time:		Approx. Purge Rate: Approx. Well Volume:	
Sampler:	JRF	Total Volume Purged: Well Volume (gal.) (2" well)= (3.8 L (ft of water)(0.163)
Weather :	89-90° Sun		
Comments:	Petroleum oder		
Signature:	J-Pt	Date: 6	29-20

VUEW 1A >										
Site:	: NSA Mechanicsburg			Tubing Diameter:						
Project No.:	1041		-	Depth to Groun	31.50					
Sampling Device:				Well Depth:						
Date:	Z/30/2	Ð	-	Feet of Water:						
Well I.D.:	203 M13		-	Volume of Wat	ter in Well:	-				
		·	-							
-	Depth to		Specific	Temper-	Dissolved					
	Water	pН	Conductance	ature	Oxygen	Turbidity	Redox			
Time	(ft TOR)	(s.u.)	(/)	(C)	(ppm)	(NTU)	(mV)			
7:40	31.01	7.68	0.151	17.00	10.94	15.2	158.6			
8:43	31.34	7.03	5.248	6.35	< 11°	₹ 34	77/ 8			
4:50	31.66	7.08	0.327	17.55	3 31	627	1477			
8:55	31 48	6.90	0.392	16.53	2.55	479	73.8			
9:00	31 25	6.87	0.415	16.58	2.16	376	-20.4			
9:65	33.81	690	0 417	2.39	1 93	2.57	-5 7 1			
4:10	32-77	7 42	2411	16.55	173	3.70	-70.3			
9:13	33.02	6.95	9.401	16.50	1./5	574	-77			
9:20	33.22	697	3.394	75.37	1 25	7.65	-79 X			
4:25	33.47	7.00	0.385	12.91	132	0.78	-84.0			
4:30	Zmole		0-303	16.60	1.37	10.10	~ 61-0			
7.30	- Service	1.10				 	ļ			
						 				
					-	 				
						 				
			<u> </u>			<u> </u>	111			
			<u> </u>							
							<u> </u>			
										
						<u> </u>				
Purge Start Time:	8:40			Approx. Purge	Rate:	150	ml/min			
Purge End Time:	9.35		-	Approx. Well V						
Sampler:	<u> </u>		-	Total Volume I		•	-			
	19075		•	Well Volume (ga	_	t of water)(0.1)	63)			
				Siame (Ba	, (= ,, e.i., (1	- or marce Marr	,			
Weather:	Sink	. h.).	70人							
	- CANV	r 1-1,6	17.0							
Comments:	0	l								
					. 1					
Signature:	11/				Date: $\sqrt{3}$	0/20				
					a s	~140				

AMS RHEA JV

Site: Project No.: Sampling Device: Date: Well I.D.:	NSA Mecha 1041 Bladder p (/14/) C So3MIU	oump		Tubing Diamet Depth to Groun Well Depth: Feet of Water: Volume of Wat	ndwater:	21.30	
Time 13:05 13:10 13:15 13:20 13:30 13:40 13:45 13:50 13:55 14:00	Depth to Water (ft TOR) 21.35 21.34 21.30 21.30 21.30 21.31 21.31 21.31	pH (s.u.)	Specific Conductance (/) 0.353 0.349 0.344 0.344 0.344 0.344 0.344 0.345 0.358 0.358	Temper- ature (C) 17.37 17.43 18.13 17.10 17.03 17.09 17.09	Dissolved Oxygen (ppm) LC1 BC1 BC1 BC1 BC1 BC1 BC1 BC1	Turbidity (NTU) 3.98 3.43 3.43 3.06 4.96 5.43	Redox (mV) 39.4 -18.4 -40.0 -40.0 -59.5 -59.5 -69.9 -49.9 -49.9
14:10	20m	7.10)k Tir	0.334	17.02	1-28	9.84	-17.7
Purge Start Time: Purge End Time: Sampler: Weather:	13:05 M23 Sing	, M.:9 .	<u>40,2</u>	Approx. Purge Approx. Well V Total Volume I Well Volume (ga	olume: Purged:	200 of water)(0.10	ml/min 63)
Comments: Signature:	156				Date: ()2	4/20	

Site:	NSA Mechanicsburg	Tubing Diameter:	303M15-01030ZC
Project No.:	1041	Depth to Groundwater:	30.28
Sampling Device:	Bladder pump	Well Depth:	100'
Date:	Jun 30, 2020	Feet of Water:	69.72
Well I.D.:	503M15	Volume of Water in Well:	

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance (/)	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
10155	30.79.	7.63	606.0	18,93	12.86	23,2	106.2
11:00	30,32	7.06	0.153	18.91	9.11	1,65	115.6
11505	31.56	7.18	0.174	18,61	7.84	1.58	119.2
11:10	31.68	7.43	0.770	18.57	6.74	2.67	1259
11:15	31.63	7,55	0.646	18.58	5.76	5,47	-59.8
11:30	31.63	7.60	0.705	18.77	5.01	1.38	-94.9
11.35	31,63	7.69	0.829	19.23	4.15	1.61	-106.
11:38	31.63	7.65	0,863	19.63	3.77	1.55	-109.6
11:35	31.63	7.66	0.887	20.65	3.44	2.11	1119
11:40	31.63	7.65	0.900	30.75	3.01	2.55	-114.
11:45	31.63	7.65	0.916	21.51	2.68	2,35	-114.5
-							

Purge Start Time: _ Purge End Time:	10:55 11:45	Approx. Purge Rate: Approx. Well Volume:	also ml/min
Sampler:	J. Fenguer	Total Volume Purged: Well Volume (gal.) (2" well)=	+/- 9.5 l (ft of water)(0.163)
Weather:	85-90° Sung		
Comments:			
Signature:	D-RT_	Date: 6	130 /2020

admin/forms/environmental/Low Flow Purging Form

Site:	NSA Mechanicsburg	Tubing Diameter:	
Project No.:	1041	Depth to Groundwater:	25.42
Sampling Device:	Bladder pump	Well Depth:	
Date:	6/23/20	Feet of Water:	-2542
Well I.D.:	S03M16-062320	Volume of Water in Well:	

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
16:55	25,42	7.37	0.432	18.54	4.08	26.2	22.7
7:00	26-00	6.51	0.418	17.62	3.07	33.1	37.6
17:05	26.30	6:43	0.418	17.74	4,95	28.9	48.4
17:10	26.53	6.58	0.422	18.18	6.01	29.2	50.7
17:15	26.68	6.68	0.422	18.31	5.28	34.8	49.2
17-20	26.79	6:72	0.421	18.45	5.97	32-9	54.8
17:25	26.81	6.69	0.419	18.23	6.46	40.2	60.9
17:30	26.86	6-67	0.417	[8,11	6.80	36.9	66.9
17:35	26-94	6.73	0.417	17-85	6.90	38.88	70.
17:40	26.97	6.60	6.417	17.91	6.97	35.2	70.9
17:45	Sampleti	me					

Purge Start Time Purge End Time Sampler:	-	55 10		Total Volu	ell Volume: ne Purged:	Volume:		
Weather :	hot	80's	Sunny			473		
Comments:	Note:	first w	ell Sampled,	equipment	Calibratal	by rentd i	6.	
Signature:	BM	200		7.	Date: 6	/23/20		

Site:	NSA Mechanicsburg	Tubing Diameter:	
Project No.:	1041	Depth to Groundwater:	22,23
Sampling Device:	Bladder pump	Well Depth:	
Date:	6/24/20	Feet of Water:	<u> </u>
Well I.D.:	S03 MIT - 062420	Volume of Water in Well:	

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance (M/ (~)	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
09:20	22.20	6.11	0.643	18.83	2.36	1.81	- 22.0
09:25	22.26	6-02	0.643	18.45	2,40	247	-18.9
09:30	22.32	6.05	6.641	18.20	2.84	3.85	-16.5
09:35	22.35	6.03	1.633	17-99	2.10	6.01	-14.2
19:40	22.38	6.16	0.631	18,02	1.30	2.92	-25.5
09:45	22.50	6,28	0.628	18.01	0.94	2.63	-37.5
09:50	22.51	6.35	0.627	18.00	0.72	3.54	-44.6
09:55	22.52	6.38	0.626	17.96	0.68	4.67	-46.9
10:00	22.54	6,42	0.627	17.91	0.66	5.33	-50.9
		-					
10:05	Sanole +	1pre					
				-	·		
				-			
						_	

Purge Start Time: Purge End Time: Sampler:	09:20 10:00 BAM		Approx. F Approx. V Total Vol	200	ml/min	
Weather :	Warm 70s		Well Volui	me (gal.) (2" well)= (ft	of water)(0.	163)
Comments:	Duplicate	Mr MID	samples	Geochen	DNA	
Signature:	BN COLD	25.1		Date: 6/24	120	

Site:	NSA Mechanicsburg	Tubing Diameter:	
Project No.:	1041	Depth to Groundwater:	22.65' 01:30
Sampling Device:	Bladder pump	Well Depth:	110
Date:	6-24-2026	Feet of Water:	27.35
Well I.D.:	6-24-2026 503 MIB-	Volume of Water in Well:	

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance (/)	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
9:50	22,70	6.69	404	22.31	7.54	6.87	-77.9
4:55	22.74	6.68	.388	20,27	4.11	1.67	-86.9
10100	22.79	6.76	1384	20,03	2.70	3.06	-95.6
10505	22.8/	6.91	,384	20, 03	2.05	1,42	-1073
10510	22.82	6.87	, 384	1997	1,63	0.77	-107.6
10115	22.84	6.92	.383	19.87	1.38	1.61	-19.2
10520	22.86	6.94	,385	20.03	1.22	1.94	- 98.4
10:25	22,87	4,99	.386	26.10	1.08	2.74	-104.1
10530	22.89	7,00	.386	70.75	6.99	2.30	-108.4
10:35	22.96	7.07	1387	30,18	0.93	2.31	-112,5
				·			
					-	<u> </u>	

Purge Start Time: Purge End Time:	9150	Approx. Purge Rate: Approx. Well Volume:	/96 ml/min
Sampler:	J. Tryvan	Total Volume Purged: Well Volume (gal.) (2" well)=	8.53 & (ft of water)(0.163)
Weather:	86 Suny		
Comments:			
Signature:	7-12th	Date: 4	121/2020

VHEW IA							
Site: Project No.: Sampling Device: Date: Well I.D.:	NSA Mechanicsburg 1041 e: Bladder pump 33M20		Depth to Groundwater:				
Time \(\lambda \cdot 30\) \(\lambda \cdot 35\) \(\lambda \cdot 45\) \(\lambda \cdot 45\) \(\lambda \cdot 55\) \(\lambda \cdot 05\) \(\lambda \cdot 15\) \(\l	Depth to Water (ft TOR) 3.12 3.12 3.13 3.47 3.55 3.78 3.87 4.05	pH (s.u.) 7.47 7.39 7.40 7.40 7.41 7.41	Specific Conductance (/) 0.124 0.124 0.124 0.123 0.123 0.123	Temper- ature (C) 17.25 17.00 17.57 17.51 17.51	Dissolved Oxygen (ppm) 1 94 1,43 2.03 1,44 3.60 4,4) 5.45	Turbidity (NTU) 5.59 7.68 8.67 10.2 11.9 12.0	Redox (mV) 173.9 120.5 1240.5 127.2 123.1 118.7 115.3
Purge Start Time: Purge End Time: Sampler: Weather:	16:30 17:10 MRS Cloudy	., M: à<	70'S	Approx. Purge Approx. Well V Total Volume I Well Volume (ga	/olume: Purged:	Q.OO t of water)(0.10	ml/min 63)
Signature:	$M \leq M$	- -			Date: 6/2	4/20	

Site:	NSA Mechanicsburg	Tubing Diameter:		
Project No.:	1041	Depth to Groundwater:	22.67	
Sampling Device:	Bladder pump	Well Depth:	110	
Date:	6-29-2020	Feet of Water:	82.33	
Well I.D.:	503M21	Volume of Water in Well:		

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
17:15	22.67	6.81	0.463	19.80	17.01	7.12	68.9
17:30	22.90	6.99	0.436	17.76	8.49	7.90	80.0
17:25	22.90	7.04	0.434	17.70	8.03	7.98	8511
17:30	22.90	7.13	0.435	17.85	8,47	7.75	90.9
17:35	22.90	7.15	0.433	17.6%	9.01	9,03	96.6
17:40	22.90	7.19	0,431	17.59	4.50	8.34	104,5
17:45	22.91	7,22	0,479	17.35	9.75	8,71	109.3
17:50	22.11	7,22	0.429	1779	9.80	8.36	111.5
							77.70
			1				
		<u> </u>					
				•			
			†				
· · · · · · · · · · · · · · · · · ·			 				
			 				

	17:15 17:50 J. Tugu	Approx. Purge Rate: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (f	7 L t of water)(0.163)
Weather:	Juny 28.90°		
Comments:			
Signature:	J-par	Date: 6/3	09/2020

1711074 14							
Site:	NSA Mecha	anicsburg		Tubing Diamet	er:		
Project No.:	1041		Depth to Groundwater:			26.24	
Sampling Device:	Bladder	oump	-	Well Depth:			
Date:	6/25/20		-	Feet of Water:			
Well I.D.:	503H22		-	Volume of Wat	er in Well:		
		•	-				
	Depth to		Specific	Temper-	Dissolved		
	Water	pН	Conductance	ature	Oxygen	Turbidity	Redox
Time	(ft TOR)	(s.u.)	(/)	(C)	(ppm)	(NTU)	(mV)
15:35	2/2-24	7.02	0-492	19.11	8.47	57.9	104.3
15.40	26,24	235	0.523	17.97	4.32	K13-2	1.011
15.45	26.25	6.14	0.523	PO. [1	3-31	47.3	104.0
15:50	26.20	617	0.521	17.00	3.03	46.6	967
15.55	26.26	616	0.522	17-06	2.89	308	89.9
16:00	26.25	624	0.523	17-11	299	704	83.3
16:05	26.27	6-04	0.520	16.94	3.23	39.7	83.0
16:10		Times			-	1	
	4	1	2.5				
	Ī						
	}						
	1 22					o	
Purge Start Time:			_	Approx. Purge	Rate:	727	ml/min
Purge End Time:	16.05			Approx. Well V	/olume:		
Sampler:	MRS			Total Volume I	Purged:		
				Well Volume (ga	il.) (2" well)= (f	t of water)(0.1	63)
	<1 1	,	- i .				
Weather:	Cloudy	, low	80'5				
	7						
Comments:			- 02				
	/				21	20	
Signature:	W < A				Date: 6/2	5/20	
//)//				-10	100	

MILEN IA								
Site:	NSA Mech	anicsburg		Tubing Diame	ter:			
Project No.:	1041	-	Depth to Groundwater:			29.04		
Sampling Device:	Bladder pump		_	Well Depth:			<u> </u>	
Date:	6/25/20	2	_	Feet of Water:				
Well I.D.:	203M41		_	Volume of Wa				
			_					
	_			,				
111	Depth to		Specific	Temper-	Dissolved			
	Water	pН	Conductance	ature	Oxygen	Turbidity	Redox	
Time	(ft TOR)	(s.u.)	(/)	(C)	(ppm)	(NTU)	(mV)	
12:00	29.25	C.58	0.598	78.87	0.97	61.6	~40.S	
17:05	18.7.6	6.43	2.559	18.03	19.88	76.9	-46.3	
13:10	29.21	6.48	18.536	18.84	0.8)	58.4	-56.8	
17:12	29.20	6.79	8.533	19.18	9.95	48.3	-72.2	
17:90	29.20	6.88	0.509	19.48	1.05	45.0	-74.2	
12:25	39-32	683	0.488	19.25	1.02	40.0	-69.8	
12:30	19.23	2.83	0.472	18.87	1.01	29.5	-623	
<i>\\</i> 2:3≤	24-21	6.77	0.468	18.76	0.91	27.	-64.0	
12:40	29.22	678	0.467	18.82	0.85	297	-66 0	
12:45	2 male	Ime.				1		
12:50	Co XIz	مدر						
	e più	1040						
						-		
							-	
-	-					 		
					 			
			 		-	-		
· · · · · · · · · · · · · · · · · · ·			-					
	<u> </u>	1	1					
Purge Start Time:	12:00	ì		Approx. Purge	Rate	100	ml/min	
Purge End Time:	12:40		_	Approx. Well			шишш	
Sampler:	100<		_	Total Volume				
Sampler.	14187		_	Well Volume (ga	•	t of motor)(0.1	(2)	
				wen volume (ga	ai.) (2 weii)— (1	t of water)(0.1	03)	
Weather:	5.00-2-1	101	<i>જ</i> ૦'ડ					
TTURLING .	Traph	2	800	, /				
Comments:	Ó	172	بطلاع طب	17 KI-	المديدة وم	10 J	ملم	
Comments,		This	we will	TO UNITED	en doser	ico in pla	Le Marc	
Signature: 2	11-1	K-4 U	090 mask	(
orginature.	WISK	>			Date: 6	72/50		
	ب ري					,		

Site:	NSA Mechanicsburg	Tubing Diameter:	
Project No.:	1041	Depth to Groundwater:	33.93
Sampling Device:	Bladder pump	Well Depth:	100'
Date:	6-30-2020	Feet of Water:	66.67
Well I.D.:	503H44	Volume of Water in Well:	

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
13105	33.93	6.93	0.891	1961	14.30	14.38	74.5
13:10	33.95	6.93	0.867	12.18	5.93	134	80.1
13.15	33.96	6.98	0.863	18.09	5.00	124	80.7
13:20	33.96	7.07	0,849	17.76	4,51	123	87.6
13:25	33.9%	7.11	0.930	17.67	4.55	101	82.4
/3.30	33.97	7.15	0.877	17.62	4.60	82.3	81.4
13:35	33.97	7.16	0.790	17.10	4,91	45.2	825
13140	33,97	7.19	0.783	17.26	5.40	63.5	81.7
13:45	33.17	7.20	0.776	17.26	5.61	5816	70 11
13:50	33,97	7.04	0.752	17.16	5.64	56.4	72,6
S							- /
				<u> </u>			
		·		·			

Purge Start Time: Purge End Time:	13:05	Approx. Purge Rate: Approx. Well Volume:	260 ml/min
Sampler:	S. Enguen	Total Volume Purged: Well Volume (gal.) (2" well)	+/- 9.0 L - (ft of water)(0.163)
Weather:	88-915° Seny		
Comments:	Thon Suspends in a	ati	
Signature:	7-PA	Date: (1.30/2020

Site:	NSA Mechanicsburg	Tubing Diameter:	
Project No.:	1041	Depth to Groundwater:	39.74
Sampling Device:	Bladder pump	Well Depth:	100
Date:	6-30-2020	Feet of Water:	65.26
Well I.D.:	503M N5	Volume of Water in Well:	

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance (/)	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
9:30	34.74	7.11	0.512	18.68	13.34	5,21	101-6
9:25	34.75	6.85	0.549	16.26	5.84	2.32	97.4
9130	34.75	6.93	0.548	16.21	3,79	1.53	94.4
9.35	34.75	6.98	0.544	16.20	2.85	1.38	95.1
9:46	34.75	7.07	0.501	16.31	2.66	3.41	94,2
9:45	34.75	7.68	0.501	16.14	2.71	2.7.1	94.1
1:50	34.76	7.69	0,499	16,14	2,60	2.68	94.3

Purge Start Time:	07:36	Approx. Purge Rate:	216 ml/min
Purge End Time:	09:50	Approx. Well Volume:	
Sampler:	J. hryuson	Total Volume Purged:	6.30
_		Well Volume (gal.) (2" well)=	(ft of water)(0.163)
Weather:	Sung 840, 90		
Comments:	<u> </u>		

Site:	NSA Mechanicsburg	Tubing Diameter:	
Project No.:	1041	Depth to Groundwater:	19:36
Sampling Device:	Bladder pump	Well Depth:	160'
Date:	6-30-7070	Feet of Water:	8044
Well I.D.:	363MW6	Volume of Water in Well:	

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance (/)	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
14:25	19.36	7.33	0.984	19.38	16.46	9.44	69.5
14:30	19.88	7.35	0.937	17.38	8.62	5.31	66.9
14135	19.88	7.45	1,028	21.65	3.06	1.20	61.5
14540	19.88	7.40	1.088	71.80	2.52	5.81	69.80
14:45	19.89	7.34	1,117	25.63	1,78	5,60	78,3
14:50	19.92	7.21	0.994	19,00	1,78	6.17	96.7
14.55	19.94	7.23	0.959	18.80	1.76	5,40	86.3
14:55	19.94	7.24	0.956	18.79	1.70	5.14	9.4.4

Purge Start Time: Purge End Time: Sampler:	14:25 15:00 J. Kurzuson	Approx. Purge Rate: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)=	#/- 7 L (ft of water)(0.163)
Weather:	88-90° 5mm		
Comments:			
Signature:	7 - PAT	Date: 6/	30/2020

Site:	NSA Mechanicsburg	Tubing Diameter:	
Project No.:	1041	Depth to Groundwater: 22.55	
Sampling Device:	Bladder pump	Well Depth: 100	_
Date:	6/25/2020	Feet of Water: 27.45	_
Well I.D.:	503 M48.	Volume of Water in Well:	

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
13:10	22.55	7.01	0719	21.44	7.83	17.1	112.5
13:15	22.95	690	0.719	20,53	6.96	1513	119.5
13:20	22.98	6.92	0.719	20.50	4.87	15.7	122.1
13,25	23.07	6.95	0.719	20.43	4.43	15.4	6.461
131 30	73.14	6.97	0.717	20.31	4,93	14.7	125.6
B135	23.28	6.97	0.717	20.39	4.07	11.9	126,6
B140	23.52	6.99	0.717	<u> </u>	4.02	9.96	1370
13:45	23.64	7.00	0.717	20.30	399	9.86	127.3
			-	-			
<u> </u>			† †				
			1				

Purge Start Time: 13:10 Purge End Time: 13:45 Sampler: 1. Ge osm	Approx. Purge Rate: 200 ml/min Approx. Well Volume: Total Volume Purged:
Weather: \$5° -90° \$ ~~	
Comments:	
Signature:	Date: 6/25/30

AMS RHEA JV

Site:	NSA Mechanicsburg	Tubing Diameter:		
Project No.:	1041	Depth to Groundwater:	16.42	
Sampling Device:	Bladder pump	Well Depth:	100	
Date:	6-25-2020	Feet of Water:	83.58	
Well I.D.:	503M49	Volume of Water in Well:		

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance (/)	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
15146	16.42	6.43	0.839	18.32	12,70	343	-33.0
15151	14.65	6.48	0.801	1295	906	33.7	-37.5
15:56	16,40	6.67	0.830	17.73	8.41	43.7	-43.4
14:01	16.60	6.57	0.798	16.31	8.12	40.0	-28.7
16:06	16.67	6.60	0,799	16.70	8.10	42.7	-23.1
16:11	16.68	6.70	0.792	16.54	8.06	38-8	-17.5
16:16	16 58	6.77	0.785	16.49	204	35.8	-13.5
16:21	16.72	6.80	0.781	16.99	8.08	39.9	-11.6
14:26	16.74	6.84	0,779	14.59	206	42.2	-8.4
16:31	16.76	6,86	0.774	16.49	8.10	43,1	5,2
							<u></u>
		<u> </u>					
			.				
			 			-	

Purge Start Time: 15:46	Approx. Purge Rate: 210 ml/min
Purge End Time: 16.31 Sampler: J. hrgusun	Approx. Well Volume: Total Volume Purged: 7, 45 1 Well Volume (gal.) (2" well)= (ft of water)(0.163)
Weather: 85-90° Sunny	
Comments:	
Signature:	Date: 6/25/20

AMS RHEA JV

Site:	NSA Mechanicsburg	Tubing Diameter:	
Project No.:	1041	Depth to Groundwater:	1x,20
Sampling Device:	Bladder pump	Well Depth:	10 -0
Date:	6/25/2+	Feet of Water:	· · · · · · · · · · · · · · · · · · ·
Well I.D.:	203N20	Volume of Water in Well:	

	Depth to		Specific	Temper-	Dissolved		1
1	Water	pН	Conductance	ature	Oxygen	Turbidity	Redox
Time	(ft TOR)	(s.u.)	(/)	(C)	(ppm)	(NTU)	(mV)
4.75	18.13	7 72	1 713	17.19	9.50	12.8	-123
1130	18.33	237	1477	16.58	4 42	12 6	-243
\$ 25	19.2	6.30	12//	17 US	2.05	931	-38.9
13:40	18.97	6.37	1227	7 44	135	12.4	-474
3 -42	8.94	6.96	1 72	17.42	1 72	24.0	-35.9
8:50	19.11	7 28	1193	1247	137	24.0	-(10
₹:35	19.26	743	1 12/2	VXU	1.50	3 2	-39.1
9:00	19.39	674	1,115	1230	1.93	35 7	-24.1
9:05	0.02	131	1.105	10.40	2 (1)	50.7	-11/
4.70	14.59	6.85	1.000	V 93	१ ।	165	-39 0
9:15	1970	780	1.091	1/00	2.69	47.9	-348
9:20	19.77	290	1.690	17.03	293	44.0	21 3
9:25	19.85	705	1.091	17.01	3.08	51.9	-27.0
9:30	Smok	Time.	1.072	1111	3.00	21. 1	-2.1.0
31.24	- A LA A					N	
	VUP-	4:35					
	M\	4:40					
	NICO	1.05					1
	M20	- 4:42					
	-				<u> </u>		
					L		

Purge Start Tim Purge End Time Sampler:		Approx. Purge Rate: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2'' well)=	250 ml/min (ft of water)(0.163)
Weather :	Juny, Low 70'5		
Comments:	Collected Dep	MS/MSO, Smell	bubbles observed in flow cell
Signature:	m 51	Date:	25/20

Site:	NSA Mechanicsburg	Tubing Diameter:	
Project No.:	1041	Depth to Groundwater:	14.76
Sampling Device:	Bladder pump	Well Depth:	100
Date:	6-25-2020	Feet of Water:	83.30
Well I.D.:	503M51	Volume of Water in Well:	

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance (~5/Cm)	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
17155	18.70	7.26	1398	20.37	17.15	13.6	118.7
18:00	16.96	7.31	0.461	18,35	7.46	10.1	125.7
18505	17.21	8.14	0.394	17.63	8.34	21.7	139.3
18:10	17.51	7.53	0.397	17.55	10.11	42.0	130.9
18:15	17.60	7.57	0.388	17.35	10.99	460	133.1
18:20	17.68	7.67	0.384	17.16	11.98	¥2.1	135.1
18:25	17.85	7.71	0.383	17.20	12.01	46.1	134.4
18:30	17.92	7.71	0.383	17.27	12.04	46.7	134.4
Ŷ.			+				
131							
		-					
	<u> </u>		-				
			+				
			 				
			 				

Purge Start Time:	17:55	Approx. Purge Rate:	210 ml/min
Purge End Time:	18130	Approx. Well Volume:	
Sampler:	I bogvar	Total Volume Purged:	8.57 L
		Well Volume (gal.) (2" well)=	(ft of water)(0.163)
Weather :	850 SUNNY / DA	valu stows	
Comments:			
Signature:	3 DK	Date:	25/2020

LUEN IA								
Site:	NSA Mecha	anicsburg		Tubing Diamet	ter:			
Project No.:	1041	600	_	Depth to Groun		26.59		_
Sampling Device:	Bladder	oump	_	Well Depth:				_
Date:	4/25/	70	_	Feet of Water:				_
Well I.D.:	ZOZMSJ.		_	Volume of Wat	ter in Well:			_
			-					_
	Depth to		Specific	Temper-	Dissolved	-	Γ	
	Water	pН	Conductance	ature	Oxygen	Turbidity	Redox	
Time	(ft TOR)	(s.u.)	(/)	(C)	(ppm)	(NTU)	(mV)	
\1:35	26.51	7.25	0.664	18.54	3.00	24.9	130.3	
17:40	2/2 62	7.08	0.651	17.39	1.68	16.5	139.3	
17:45	26.71	6.44	0.645	17.17	0.95	B-0	143.8	
17:50	26.76	7.01	0-648	17-20	0.93	12.2	136.9	,
17:55	20.78	7.02	0.642	17.00	1.06	9.63	135.8	
18:00	36-81	7.04	0.442	17.07	1.45	7.32	134.0	
18:05	26.26	7-01	0.436	16.74	1.62	779	134.3	
18:10	Jamole	7:mc			,			
·								
]				The second	
			·					
<u></u>					ļ			
7					_			
Purge Start Time:	17:35		_	Approx. Purge	Rate:	100	ml/min_	
Purge End Time:	18:05		_	Approx. Well V	olume:			
Sampler:	MRS		_	Total Volume F	urged:			_
				Well Volume (ga	d.) (2" well)= (f	t of water)(0.10	63)	_
	_	1 1	۱.,					
Weather:	JUNKY,	CON NO	5					_
_	T.							
Comments:								_
State 14	100				2. 11	J.		
Signature:					Date: 6/2	8(JO		
	_				•	, -		

Site:	NSA Mechanicsburg	Tubing Diameter:	
Project No.:	1041	Depth to Groundwater:	16.91
Sampling Device:	Bladder pump	Well Depth:	100
Date:	6/24/2020	Feet of Water:	83.09
Well I.D.:	503 M54	Volume of Water in Well:	

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance (/)	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
13:55	16.91	6.91	599	23.0B	19.584	8.94	-136 B
14500	16.98	6.84	.602	20.50	7.15	6.07	-143.2
14:05	14.98	7.01	. 672	21.90	3.10	5.98	-161.7
14110	16.98	7.15	,690	22.92	1.91	5.14	-1788
14:15	1.98	7.18	.685	23.18	1.21	5.76	-185.0
14:30	16.98	7/8	,694	23.14	1.10	5.24	-1846
14:25	14.992	7.20	,692	23.05	0.87	5.31	-186.7
14:30	16.98	7.21	693	13,24	0.75	5.41	-189.5
14535	14.98	7.72	1694	23.25	0.65	5.42	- 182,8
-			+ +		<u> </u>		
			 				
	-		 				
	-						
			 		-		
				<u> </u>	 		
			 				

Purge Start Time: /3,53	Approx. Purge Rate: 200 ml/min
Purge End Time: 14135 Sampler: J. Ingusm	Approx. Well Volume: Total Volume Purged: #- E Ø
Weather: Suny 80°-9	Well Volume (gal.) (2" well)= (ft of water)(0.163)
Comments:	
Signature:	Date: 6/24/2000

Site:	NSA Mechanicsburg	Tubing Diameter:		
Project No.:	1041	Depth to Groundwater:	14,22	
Sampling Device:	Bladder pump	Well Depth:	49.21	
Date:	6-23-2020	Feet of Water:	84.94	
Well I.D.:	503 M 57	Volume of Water in Well:		

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance (~5/ e~)	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
17:05	14: 22	6.25	.403	21.83	19.62	3,14	-58.6
17:10	14:05	6.78	.395	18.99	4.85	3.02	-78
17:15	14.25	7.01	392	21.05	2.18	1,59	-919
17:20	14.25	7.06	- 393	20.71	1.60	0.74	-9572
17:25	14,25	6.97	.392	20.30	1.27	1,25	-88.2
17:30	14.26	7.62	.391	20.33	1.05	1.30	~90.7
17:35	14.24	7.06	.390	10.11	0.95	1.50	-89,5
17:40	14,06	7.69	.389	19.95	0.91	3.01	-87.9
17045	14.56	7.09	-388	19.80	0.88	3.05	-84.8
		-					
						-	
			 				

Purge Start Time: Purge End Time: Sampler:	17:05 17:45 J. Fryguson	Approx. Purge Rate: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (### ##################################
Weather:	Sum 88-90		
Comments:			
Signature:	- RTS	Date: 6	123/20

Site: NSA Mechanicsburg								
Sampler: Sampler: Sladder pump Well Depth: Feet of Water: Volume of Water in Well:	Site:	NSA Mecha	ınicsburg		Tubing Diamet	ter:		
Sampler: Sampler: Sladder pump Well Depth: Feet of Water: Volume of Water in Well:	Project No.:	1041		_	Depth to Grou	ndwater:	27.6	3
Volume of Water in Well:	Sampling Device:	Bladder p	ump	_	Well Depth:			
Purge Start Time: Approx. Purge Rate: Approx. Purge Rate: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163)	Date:	6/30/2	0	_	Feet of Water:			
Water	Well I.D.:	303AC	15	_	Volume of Wat	ter in Well:	•	
Water				_				
Water								
Water		Depth to		Specific	Temper-	Dissolved		
Time (ft TOR) (s.u.) (/) (C) (ppm) (NTU) (mV)			pН			1	Turbidity	Redox
Purge Start Time: Purge End Time: Approx. Purge Rate: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:	Time	(ft TOR)	-					
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:								
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:								
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:								
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:								
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:								
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:								
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:								
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:								
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:								
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:								
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:							İ	
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:								
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:					-			
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:							†	
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:								
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:	•							
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:							<u> </u>	
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:								
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:							1	
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:							 ''' 	
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:							<u> </u>	
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:								
Purge End Time: Sampler: Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:	Purge Start Time:				Approx. Purge	Rate:		ml/min
Sampler: Total Volume Purged: Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:				-				
Well Volume (gal.) (2" well)= (ft of water)(0.163) Weather:	_	W0<		-				
Weather: Summy, W-21 Tox	oumpion.	1.16		_		_	t of water\\0.16	(3)
Weather: Sunny, W. 41 To'S Comments: Could not Sample the to lock of writer - 18:50 Signature: M Sh Date: 430/20					wen volume (ga	, (2 well) – (1	t of water Ao.10	15)
Comments: Coud not Sample the to lack of water - 18:50 Signature: M Sh Date: 4/30/20	Weather:	Sim	W- 21 0	5 / ≺				
Comments: Could not Sample the to lack of water - 18:50 Signature: My 56 Date: 6/80/20	************	- Jon (14)	11.4					
Signature: M 56 Date: \$\langle \frac{10.30}{20}	Comments:	(allia)	7 <>-	do 1 - 1	a lack of	مرم اجداد	- 18.50	`
Signature: M 56	Comments.	-NO H	11 Sam	pie one T	0 100-101	WC19C	tn·o/	
Date: 4 00/20	Signature: 7	10-1				Date: //2	10-	
	Marie M	11 30				- A 00	130	

Date: 6/29/20

Site: Project No.: Sampling Device: Date: Well I.D.:	NSA Mecha 1041 Bladder I	oump	- -	Tubing Diame Depth to Grou Well Depth: Feet of Water: Volume of Wat		6	
Time \7:50 \7:55 \8:05 \8:05 \8:16 \8:16 \8:16 \8:25 \8:30	Depth to Water (ft TOR) 18.53 74.44 30.19 31.43 32.40 33.29 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	pH (s.u.) 7.49 6.80 6.75 6.76 7.90 7.00 7.07	Specific Conductance	Temper- ature (C) 18.46 16.30 16.00 16.00	Dissolved Oxygen (ppm) S.SO T.OI T.U3 T.U7 T.U9 T.U9 T.U9 T.U9 T.U9 T.U9	Turbidity (NTU) 9,23 7,13 3,47 3,57 3,67 1,50	Redox (mV) 88.0 1697 107.8 101.0 77.9 73.9
Purge Start Time: Purge End Time: Sampler: Weather :) 5	- - -	Approx. Purge Approx. Well V Total Volume (ga	Volume: Purged:	\50	ml/min

Comments:

Signature:

VUEW IA							
Site:	NSA Mecha	anicsburg		Tubing Diamet	er:		
Project No.:	1041		-	Depth to Groun		20.97	
Sampling Device:	Bladder	oump	-	Well Depth:			
Date:	626/20	2	•	Feet of Water:			
Well I.D.:	502W/30	(i	-	Volume of Wat	er in Well:		
	30.51 -0250		•				
	Depth to		Specific	Temper-	Dissolved		
	Water	pН	Conductance	ature	Oxygen	Turbidity	Redox
Time	(ft TOR)	(s.u.)	(/)	(C)	(ppm)	(NTU)	(mV)
10:25	17.96	12.46	5177	21 23	262	917	60.0
10:30	19.74	12 14	4.805	19/9	416	10.7	99.7
10.35	23.22	13.02	4.580	17 44	2-89	21.2	434
10:40	24.53	11.00	4.566	19.44	7 58	17.6	92.0
10:45	26.47	17 24	4.549	17.41	2 27	12 3	80.0
19:50	28.46	11 0/2	4.501	7 34	2.12	4.5	₹₹ ₹
10:35	35.59	12.06	L 227	7.40	194	979	र्ये प
11:00	32.14	12.07	4.531	7 24	140	7.06	- 126-1
11:05	34.51	12.07	457	17 17	178	7.00	46.4
11:10	Samok	Time			1.61	1.00	
(1,-1,0	Santa	1,111					
	. —			_			
						· -	
				-			
	L						
Purge Start Time:	10.535			Approx. Purge	Rate:	150	ml/min
Purge End Time:	TUOS	•	-	Approx. Well V			
Sampler:	110<		•	Total Volume P			
Samplet.			•	Well Volume (ga	_	t of water)(0.1	63)
		_		THE POLITIC (BA	1.) (2 well) (1	t or water)(o.1	03)
Weather:	June	H.A.	90'X				
***************************************	20011111) \\ \\ \\	10. 2				.
Comments:	1:12	een obs	kned in	Durge	ماءمله	Minto	عدلم مدي
~ ~ and and 900 8	12/01 OF	KKY Z ONG	W IEW W	A valer (V)	ec, ho	The state of the s	um oda
Signature:	m KL			V	Date: (/)	(12A	
//	11 377				96	CH PL	

Site:	NSA Mechanicsburg	Tubing Diameter:	
Project No.:	1041	Depth to Groundwater:	28.48
Sampling Device:	Bladder pump	Well Depth:	
Date:	6/26/20	Feet of Water:	
Well I.D.:	203WC309	Volume of Water in Well:	

Time 2.25	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
4:30	31.35	11.5	2.047	17.57	17.8	4.58).55.] Ç5.]
1:46 1:45	33.83 34.93	11.40	2.145	17.24	2.44	4.94	141.7
8:50 8:66	37.20	11.59	2.120	17.29	1.46	3.05	133.7
9:00	38.28 Jamole	11.68 7-me	2.114	17.45	1.23	a.4S	121.6
				P			
18 14							

Purge Start Time: 7:25 Purge End Time: 9:00 Sampler:	Approx. Purge Rate: 150 ml/min Approx. Well Volume: Total Volume Purged:
Weather: Sung N: A 6	Well Volume (gal.) (2" well)= (ft of water)(0.163)
Comments:	
Signature:	Date: 6/26/20

admin/forms/environmental/Low Flow Purging Form

Site:	NSA Mechanicsburg	Tubing Diameter:	
Project No.:	1041	Depth to Groundwater:	25:68' SMMC /24.77
Sampling Device:	Bladder pump	Well Depth:	270
Date:	6-25-2020	Feet of Water:	244.37
Well I.D.:	503M63 17	Volume of Water in Well:	

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance (^{N)} /(M)	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
091.57	24,77	10.57	,737	19,44	8.50	32.9	100.1
10:02	27.20	11.15	1.168	18.18	7.55	32.4	77.7
10:07	28.70	11-32	1,374	17.90	7.01	30,2	584
10:12	19.35	11.44	1,412	17.93	616	21.8	49.8
10:17	30.15	11.48	1,428	17.94	554	31.0	41.3
10:22	31.35	11.50	1,431	17.75	4.99	29.6	45.6
10:27	32.47	11.56	1.420	1290	4.50	29.6	42.3
10:32	23.48	11.58	1.413	17.95	4,14	19.2	40.3
10:37	33.48	11.59	1.412	12.00	3.59	29.8	39.2
				-			\$ (A)
							1/1
							-

Purge Start Time Purge End Time:		Approx. Purge Rate: Approx. Well Volume:	2000 ml/min	
Sampler:	J. kingusm To	Total Volume Purged: Well Volume (gal.) (2" well)= (fi	& O Q t of water)(0.163)	
Weather :	78° - 90° 30 Mg			
Comments:	Extlement unstablisher of feet	ly/ peop SINTU @ 16.15 (1	HOT 5 MMC)	
Signature:	J-PA	Date: 6.0	15-2020	

Site:	NSA Mechanicsburg	Tubing Diameter:	
Project No.:	1041	Depth to Groundwater:	22.51
Sampling Device:	Bladder pump	Well Depth:	185
Date:	6-24-2020	Feet of Water:	162.49
Well I.D.:	303 M64 D1	Volume of Water in Well:	

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance (M)/lm)	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
16:30	32.51	11.83	4.495	21.42	1198	11.7	31.6
16:35	25.90	12.04	5.063	19.48	8.29	18.7	-13
16:40	27.91	12-11	5.070	18.81	6.15	10,6	-217
16 45	30,12	12.14	5.053	A.20	4.53	843	-310
16 50	31.14	12.14	5.129	19.97	3.40	8.74	-36.0
16:55	33.77	12.15	5.130	19.85	2.70	7.45	-37.1
17:00	33.77	12.15	5.125	12.83	2.36	8.16	- 37.3
17:05	34.98	12.15	5.114	11,83	2.12	7.59	-37.6
17:10	35,77	12.15	5.125	19.84	1.90	7.61	-37.8
					-		_
	<u> </u>						
		<u></u>					
						Ξ	
	_						

Purge Start Time: _ Purge End Time: _ Sampler: _	16130 1.6130 2.61305	Approx. Purge Rate: 2/0 ml/min Approx. Well Volume: 8.5 0 Total Volume Purged:
Weather:	Juny \$296	Well Volume (gal.) (2" well)= (ft of water)(0.163)
Comments:	28.5	
Signature: -	Dort	Date: 6-24 7020

IZUEW 14								
Site: NSA Mechanicsburg		anicsburg	Tubing Diameter:					
Project No.:	1041		Depth to Groundwater:			29.53		
Sampling Device:	Bladder p	oump	•	Well Depth:				
Date:	503MCH02		•	Feet of Water:				
Well I.D.:			•	Volume of Wat	er in Well:		-	
			•					
	Depth to	,	Specific	Temper-	Dissolved			
	Water	pН	Conductance	ature	Oxygen	Turbidity	Redox	
Time	(ft TOR)	(s.u.)	(/)	(C)	(ppm)	(NTU)	(mV)	
17:10	29 22	11/65	2, 182	90.00	2.20	10.9	18) A	
13:15	31.31	11 35	2.068	1878	1.7.1	14.2	150,0	
13:30	33.84	11 38	2.018	18.32	1.07	n.4	133 1	
12.25	35.03	11 33	2 213	K 45	0.83	7.00	135.8	
19:30	36.90	11/17	2.0.3	14 (14)	1.14	4.04	1115 5	
12:35	38.57	11.97	1 223	1274	0.93	9.03	105.0	
13:40	20.06	11 US	2.025	10.19 10.50	0.79	19.3	103 Y	
12-45	पा रि	11.50	2.019	18.72	0.69	747	₩./	
17:50	112 X	11.50	7.77	14 51	2.65	957	417	
13.55	10.00	15.00	0.016	10.01	0.62	7.0	97.0	
14-13	- Xumpa	time						
						<u> </u>		
						_		
			1			<u> </u>		
			-					
					<u> </u>			
					<u></u>			
					<u> </u>	<u> </u>		
	<u> </u>							
Purge Start Time:	12.10			Approx Durgo	Data	9-0	ml/min	
Purge End Time:	12:50		•	Approx. Purge Approx. Well V		700	mvmm	
Sampler:	14.30		•					
Sampler:			•	Total Volume F	•		(2)	
				Well Volume (ga	11.) (2" Well)= (1)	oi water)(u.i	03)	
Weather:	Simba	N. A. T.	~					
AA CHINEL :	JUNY,	H:95 10	->			<u> </u>		
Comments:	V	•						
Comments:						1		
Signature:	21				Date:	1/2		
Signature:	"/ `				Date: A 4	(M)		

Site:	NSA Mechanicsburg	Tubing Diameter:		
Project No.:	1041	Depth to Groundwater:	93.55	
Sampling Device:	Bladder pump	Well Depth:	230	
Date:	6/29/2030	Feet of Water:	206.45	
Well I.D.:	303M105D	Volume of Water in Well:		

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance (/)	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
12150	23.55	8.48	0.570	20.53	12.70	4.14	27.6
12:55	23.64	9.11	0.506	17.57	4.05	12.1	-104.4
13:00	23.71	9.19	0,494	16.95	2.70	7.02	-119.7
13:05	23.84	9.25	0.493	16.99	2.21	7.37	-125.6
13:10	23.97	9,31	0.492	17.09	1.83	7.41	-132. 2
13:15	24.15	9,40	0.498	17.57	1.53	7.51	-140.4
13:30	24.31	9.40	0.497	17.55	1.42	214	-142.4
13:25	24.47	9.44	0.498	17.65	1,37	7.61	-144,6
13:30	24.64	9.46	0.500	17.86	1.29	7.88	-145.8
							-

Purge Start Time: /2:50 Purge End Time: /3:30 Sampler: T. Kerzuzen	Approx. Purge Rate: 320 ml/min Approx. Well Volume: Total Volume Purged: E.E.L
Weather: 5.40°	Well Volume (gal.) (2" well)= (ft of water)(0.163)
Comments:	
Signature:	Date: 6/34/2020

IZIIPW 14							
Site:	NSA Mecha	anicsburg		Tubing Diamet			
Project No.:	1041		Depth to Groundwater:			<u>1570</u>	
Sampling Device:	Bladder	oump	-	Well Depth:		7	
Date:	6/30/2	X O	-	Feet of Water:			
Well I.D.:	203MCC	10.	_	Volume of Wat	ter in Well:		
			-				
	Depth to		Specific	Temper-	Dissolved		
	Water	pН	Conductance	ature	Oxygen	Turbidity	Redox
Time	(ft TOR)	(s.u.)	(/)	(C)	(ppm)	(NTU)	(mV)
10:40	17.59	11.09	1.416	14.78	2.93	213	70.4
10:45	18.90	11.06	1.390	18.84	3.26	35.3	75.9
10:50	20.01	11.07	1.392	18.44	2.58	0.71	87.9
10:55		11.09	1.400	18.75	3-12	12.2	6.78
11:00		11-15	1.394	18.60	1.88	6.62	872
11:05		11.13	1.362	18.15	1.85	8.68	87.8
11:10		11.10	1.378	18.13	177	8.44	89.4
11:15	Samok	Tome					
	· · · · · · · · · · · · · · · · · · ·			<u> </u>			
						ļ	
	<u> </u>				<u> </u>		
T. C. (50)	101/10				_	1/2	
Purge Start Time:	10:00			Approx. Purge		150	ml/min
Purge End Time:	<u> </u>			Approx. Well V			
Sampler:	WK2			Total Volume I	_		
				Well Volume (ga	il.) (2'' well)= (f	t of water)(0.1	63)
381-141-	<	11.1	- ~~				
Weather:	sunry	H.CV	10.7			<u> </u>	
Comment	11-1	ر مام	A				
Comments:	Waster F	ever have	acc hot	LOCKING.			
Signature: 11	1 - 1			J	Date: //-	n/a-	
Signature:	r/ S/-	>			Date:	N/TO	
					ι		

VUEW 14								
Site:	NSA Mecha	anicsburg		Tubing Diamet				
Project No.:	1041 Bladder pump		Depth to Groundwater:			17 41		
Sampling Device:			-	Well Depth:		153.1	1	
Date:			-	Feet of Water:				
Well I.D.:	503M6	202	-	Volume of Wat	er in Well:			
			-					
	Depth to		Specific	Temper-	Dissolved]		
	Water	pН	Conductance	ature	Oxygen	Turbidity	Redox	
Time	(ft TOR)	(s.u.)	(,/)	(C)	(ppm)	(NTU)	(mV)	
19:50	17.57	11.30	1.627	71.02	3.73	9.76	20.8	
12:32	19.11	11.13	1.528	19.19	3.59	9.	54.7	
12:30	20-64	11-19	1.500	18.6	2.69	11.6	47.4	
12:35	21.83	11-13	1 215	19.04	5.99	8.51	41.4	
13:40	23.46	1.16	1.514	19.16	1.93	7.67	33.4	
12:45	24.79	11-18	1.515	19.18	1.89	10.7	37.5	
12:50	36.18	17-78	11.499	18.74	1.83	9.46	02.1	
12:55	27.60	11.19	1.50	19.16	1.73	7.60	9.9	
13:00	35.84	11.20	1.213. <u> </u>	19.17	1.65	8.29	18.7	
13:05	Samole	Time						
		<u>'</u>						
_								
							_	
				_				
		<u> </u>						
					_			
	12,00					160		
Purge Start Time:			-	Approx. Purge		19 /	ml/min	
Purge End Time:	13:50		-	Approx. Well V				
Sampler:	- MK-7		-	Total Volume F Well Volume (ga	_	of water)(0.1	63)	
	/	ı	4) .					
Weather:	Junta	whon!	<u>જ્યું≾</u>					
Comments:								
	- 1				. 1	1		
Signature:	21 St	7			Date: $\left\langle \left\langle \frac{1}{8} \right\rangle \right\rangle$	0/20		
• • • • • • • • • • • • • • • • • • • •	· 1 Je/				\sim_l	700		

LUCA 14							
Site:	NSA Mecha	anicsburg		Tubing Diames	ter:		
Project No.:	1041		Depth to Groundwater:			2698	
Sampling Device:	Bladder	oump	-	Well Depth:			
Date:	7/1/20		_	Feet of Water:			
Well I.D.:	203MCJ	10	_	Volume of Wat	ter in Well:		
	_						
	Depth to		Specific	Temper-	Dissolved		
	Water	рН	Conductance	ature	Oxygen	Turbidity	Redox
Time	(ft TOR)	(s.u.)	(/)	(C)	(ppm)	(NTU)	(mV)
w:35	27.53	7.85	O.518	30.14	4.17	491	JII.O
10:40 10:40	27.60	7:77	0.503	17.33	448	5.15	1.201
10145	24.0-	7.33	0.493	17.27	2-38	63	1358
10:50	25.94	7.72	2.434	13.93	1.68	14.50	134.3
16:55	33.94	7.18	0.500	18.06	1.37	4.44	117
11:00	27.46	7.18	0.497	17.84	1.59	180A	113.2
11:02	78.96	2.12	0.492	17.34	1.54	3.75	197.4
11:15	27.97	<u>/·)}</u>	0.416	16.94	1.76	4.68	102.0
11.12	78.99	7.09	0.466	13.33	1.60	4.8	97.6
11:30	2 who	4 me	<u> </u>		 		
	,	 	1		 		
						<u> </u>	
		<u> </u>	 		-		
	-					-	
				<u> </u>	 	 	
<u>-</u>					· -		
			<u>'</u>			<u></u>	
Purge Start Time:	10:35			Annua Dunga	Datas	100	ml/min
Purge End Time:	11:15		-	Approx. Purge Approx. Well V		100	mviniu
Sampler:	1105	<u> </u>	-	Total Volume l			
Samplei.			-	Well Volume (ga	-	t of water)(0.1	63)
				/8-			,
Weather:	Sunta	1, Loh	10,2				
		1,					
Comments:		 -		-			
Signature:	W <1				Date: 7/1	laa	
~-B					- ([1]	40	

Site:	NSA Mecha	anicsburg		Tubing Diamet			
Project No.:	1041		•	Depth to Groundwater:			
Sampling Device:	Bladder	oump	-	Well Depth:		35.0	
Date:	711/20	<u> </u>	-	Feet of Water:			
Well I.D.:	5031/27	05	•	Volume of Wat	er in Well:		-
			•				
	Depth to		Specific	Temper-	Dissolved		
	Water	pН	Conductance	ature	Oxygen	Turbidity	Redox
Time	(ft TOR)	(s.u.)	(/)	(C)	(ppm)	(NTU)	(mV)
13:00	27.57	7.66	0.467	JO.1C	0.97	3.73	657
19:08	28.25	7.20	0,423	17.42	3.75	5/26	57.6
13:10	29.96	707	0.411	17.44).33.	4.97	r. 01-
13:15	30.49	7.00	0.412	17.24	1.06	8.58	-38.6
13:30	31.09	Zar	0.413	17.37	0.88	195	~35.3
12:35	31.57	7.02	2.408	16.69	0.88	673	-21.6
12:30	31.86	6.93	0.404	16.40	0.87	1.26	-9.4
12:35	3215	639	0.404	16.37	0.85	4.67	-1.2
12:40	32.33	690	0.404	V 44)	0.86	2.80	2.
15:45	Smole	Time.			- 10	G	
	Ocean A.	7654-					
						1	
			8		_		
					· · · · · · · · · · · · · · · · · · ·		
		<u> </u>					-
	<u> </u>						
<u>. </u>			<u> </u>				
Purge Start Time:	12:00)		Approx. Purge	Rate:	ライ	ml/min
Purge End Time:	100	<u> </u>	•	Approx. Well V			
Sampler:	1/0	<u> </u>	•	Total Volume F			
F			•	Well Volume (ga	_	t of water)(0.1)	63)
	,		•	(5	, (, (-	()	,
Weather:	Junk	C MJ	% 5				
•		 		<u>.</u>			
Comments:	U						
					,		
Signature:	MSI				Date: 7/1	ac\	
7		>			11	1977	

Site: Project No.: Sampling Device: Date: Well I.D.:	NSA Mechanicsburg 1041 Bladder pump 30/30/30 503H () 10		Tubing Diameter: Depth to Groundwater: Well Depth: Feet of Water: Volume of Water in Well:			27.60	
Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
15:16	27.61	7 412	2.667	14.09	435	2 70	65.4
12:15	F1. 29	7 66	XZX	17.30	3.24	5/2	114
15:20	17 3	432	0.596	16.50	2,13,	5 3n	14.8
15:25	27.61	7.18	0.609	7 35	174	7 98	704
15:30	27.60	7.09	0.616	16.33	1:55	5.73	27.7
18:35	27.59	5.03	0.66	12.3	1.46	843	77-
15:40	77.21	7.00	0.65	16.06	120	1/ 0/	देंत.प
14.45	5-000	٠. ا	0.610	16.00	1. 0	6.97	YOU. 9
19.13	Jample	Time					
			à				
					-		
				-			
Purge Start Time: Purge End Time: Sampler:	15:0 15:0 MRS	_		Approx. Purge Approx. Well V Total Volume F Well Volume (ga	olume: 'urged:		ml/min
Weather:	Sunny	Mids	で え				
Comments:							
Signature:	M S	>			Date: 6/3	b/20	_

IZELEW 14								
Site:	NSA Mecha	anicsburg		Tubing Diamet	er:	74.46		
Project No.:	1041			Depth to Groun				
Sampling Device:	Bladder	oump	-	Well Depth:				
Date:	6/30/20		_	Feet of Water:				
Well I.D.:	S3468	25	_	Volume of Wat	er in Well:			
	Depth to		Specific	Temper-	Dissolved		<u> </u>	
	Water	pН	Conductance	ature	Oxygen	Turbidity	Redox	
Time	(ft TOR)	(s.u.)	(/)	_(C)	(ppm)	(NTU)	(mV)	
16:59	26.64	7.87	0.767	14.18	3.81	157	91.3	
16:33	27.89	7.30	0.704	16.39	3.03	1),4	36.3	
17:00	97.10	7.10	0.692	16.09	1.69	14.4	27	
17:05	29.94	702	0.65	15.95	1.50	7.04	19.8	
17:10	30.73	7.02	0.684	15.84	1.17	10.7	-7.3	
17:15	31.56	1.00	0.632	15.87	1.0]	9.88	-360	
17:20	29.12	6.49	0.581	12.84	1.08	607	-35.3	
17:25	32.65	6.78	0.679	15.73	0.97	7.90	-38.5	
17:30	33.27	6.96	0.672	13.57	1.03	3.59	-41.6	
11:35	33.69	696	0.675	13.36	1.0	7.40	7770	
17.40	अंग्ले	6.95	0.674	15.69	1-08	4.05	~45.0°	
17:95	Sample	Time						
	— `							
			-			-		
						 	_	
					<u> </u>	 		
						 -		
· · · · · · · · · · · · · · · · · · ·	<u> </u>		 			 		
	ハノンナム					۵۰۰۰		
Purge Start Time:			_	Approx. Purge		120	ml/min	
Purge End Time:	17:40		-	Approx. Well V				
Sampler:	MK2		-	Total Volume I	_			
				Well Volume (ga	l.) (2'' well)= (f	t of water)(0.1	63)	
Waathan :	<	11. 20	80'5					
Weather:	Sing	High	002					
Comments:	U	•						
		<u> </u>						
Signature:					Date: 6	1/20		
Signature.	1 50				Date: (0) (1)	02/20		

Site:	NSA Mechanicsburg	Tubing Diameter:	
Project No.:	1041	Depth to Groundwater:	38.34
Sampling Device:	Bladder pump	Well Depth:	195
Date:	June 30, 2020	Feet of Water:	156.66
Well I.D.:	SO3MGD1	Volume of Water in Well:	

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
18:10	38.34	7.21	0.597	1903	1245	4.32	42.1
18:15	39.07	7.20	0.542	15.99	9,45	3.15	-28.0
18:20	39.02	7.25	0.552	15.84	6.30	4.14	7604
18:25	39.03	7.26	0.557	16.18	5./1	3.86	765.5
18:30	3903	7.22	0.550	15.66	4.58	3.41	-589
18:35	3904	7.22	0.548	15.42	4.10	2.81	-526
18:45	3404	7.23	0.545	15.36	3.89	2.74	-45.9
18:45	39.04	7.23	0.546	15.36	3.80	2.20	-46.1
			- 				
			ļ				
<u></u>					<u> </u>		

Purge Start Time: Purge End Time:	18:10 18:45	Approx. Purge Rate: Approx. Well Volume:	195 ml/min
_	J. Ferguson	Total Volume Purged: Well Volume (gal.) (2" well)=	6. 275 L (ft of water)(0.163)
Weather :	SUUNY 85-90°		
Comments:			
Signature:	-R+	Date: 6	130/2020

Site:	NSA Mechanicsburg	Tubing Diameter:		
Project No.:	1041	Depth to Groundwater:	37.48	
Sampling Device:	Bladder pump	Well Depth:	230'	
Date:	June 30,7020	Feet of Water:	192.52	
Well I.D.:	503M69D2	Volume of Water in Well:		

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance (/)	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
16:30	37.48	7,34	0,694	21.67	16.38	1,89	55%
16:35	39.03	7.15	0,637	18.55	11.54	3.63	55.8
16546	31.11	7.19	0.549	15.97	6.26	2.55	-59.1
16:45	34,19	7.22	0.592	15.54	3.95	3.21	-74.2
16:50	39.21	7.25	0.592	15.57	2-89	331	-79,0
16255	34.32	7,04	0,589	15.50	2.26	3.16	-78.4
17100	39.24	7.26	0.586	15.47	1.86	3.01	-77.5
17105	39.07	7,27	0.584	15.36	1,67	2.61	-772
<u>.</u>							
			-		_		
	_						
				_			

Purge Start Time: 16:30 Purge End Time: 17:05 Sampler: J. Frague	Approx. Purge Rate: 3/0 ml/min Approx. Well Volume: Total Volume Purged: 7.35 1 Well Volume (gal.) (2" well)= (ft of water)(0.163)
Weather: Smy 850-	90°
Comments:	
Signature:	Date: 6/30/2020

1411FW 14 ::							
Site:	NSA Mecha	anicsburg		Tubing Diamet			
Project No.:	1041		_	Depth to Groundwater:			<u>5</u>
Sampling Device:	Bladder	oump	_	Well Depth:		70.	~
Date:	6/29/20		_	Feet of Water:			
Well I.D.:	13/190		_	Volume of Wat	ter in Well:		
			-				
	Depth to		Specific	Temper-	Dissolved		
	Water	pН	Conductance	ature	Oxygen	Turbidity	Redox
Timę	(ft TOR)	(s.u.)	(/)	(C)	(ppm)	(NTU)	(mV)
16:05	32.74	7.99	0.613	19.70	214	7.96	147.0
16:10	25.65	7.97	2539	18.48	2.62	637	140.2
16:15	27.57	8.22	0.579	W.69	1.33	4.56	1307
16:30	29.52	X.39	0.605	1874	1.02	7.97	103 9
16:25	33.94	200	0.743	18.50	0.91	9.69	983
16:30	20,40	6.89	0:147	14.16	0.90	740	-40
16:35	33.91	6.70	0.775	18.26	1.09	7 44	-57.0
16:40	34.92	667	2765	17.73	1.43	7.7%	-63.0
16:45	35.99	6.66	<i>7</i> 7 ₹4	18.03	1.02	797	-(()
16250	37.15	670	5741	17.19	291	6.03	- 70 K
12:35	Samole	T:me			 		
, , , , , , , , , , , , , , , , , , , ,							
						-	
						 	
						<u> </u>	
					-	 	
		_					
Purge Start Time:	1/:05	,		Approx. Purge	Rate:	150	ml/min
Purge End Time:	16:50		-	Approx. Well \			min mini
Sampler:		<u></u>	•	Total Volume l			
bampier.	101103		•	Well Volume (ga	_	t of water\\A 1	63)
				wen volume (ga	u., (2 wen) - (1	t of water join	03)
Weather:	Suntry	17 YY <	るさ				
) [11]	,, <u> </u>				
Comments:	U	V					
~~							
Signature:	m < 1				Date: C/2	9/20	
					2/2	1/20	

Site:	NSA Mecha	anicsburg		Tubing Diamet	er•		
Project No.:	1041		•	Depth to Groun		34.6	
Sampling Device:	Bladder	oump	•	Well Depth:	id William	77.2.	<u> </u>
Date:	42912		•	Feet of Water:		_	-
Well I.D.:	₹3005T	<u> </u>	•	Volume of Wat	er in Well:		
VI 011 212/11	-000ELLI		•	volume of vouc	er in wen.	<u></u>	
	Depth to		Specific	Temper-	Dissolved		
	Water	pН	Conductance	ature	Oxygen	Turbidity	Redox
Time	(ft TOR)	(s.u.)	(/)	(C)	(ррту)	(NTU)	(mV)
14:05	32.86	9.48	0.374	25.54	4.65	9.78	13.0
14:10	34.17	7.83	<u> </u>	20.18	4.28	0.74	(4.7
14:15	35.09	8.45	<u> </u>	21.69	3.25	78	31.6
Y4:20	32.12.	8.96	0.341	21.80	2.45	4.49	-11.9
14:25	37.32	9.15	0.197	21.10	1.83	5.01	-31.8
14:30	3831	9.16	0.269	21.47	1.79	15.31	-48.3
141:35	38.90	8.8)	0.141	31.19	1.65	3.94	-38.1
14:40	39.75	8.58	උ.බාහි	20.99	1.55	15.82	-37.0
14:45	41.33	8.59	0.230	21.07	1-32	476	-77.3
14:50	Timble	Time					
55							
	۰. سـ						
Purge Start Time:	14:05			Approx. Purge	Rate:	ba	ml/min
Purge End Time:	<u> 14:45</u>			Approx. Well V	olume:		
Sampler:	MRS			Total Volume P	urged:		
				Well Volume (gal	l.) (2" well)= (fi	of water)(0.1	63)
	بے		クリン				
Weather:	Surve	M:85	60.2				
	7	•					
Comments:							
	. 1				- 1		
Signature:	1<				Date: 420	1/20	
///					700	1~~	

VUEW 14							
Site:	NSA Mecha	anicsburg		Tubing Diamet	er:		
Project No.:	1041		-	Depth to Groun		2/74	
Sampling Device:	Bladder	oump	-	Well Depth:		- Chr. I) —
Date:	C/24/2		-	Feet of Water:			
Well I.D.:	SIMO?	<u> </u>	-	Volume of Wat	er in Well:		
	الهدا الأحاب		-				
(- ×	Depth to		Specific	Temper-	Dissolved		
	Water	рН	Conductance	ature	Oxygen	Turbidity	Redox
Time	(ft TOR)	(s.u.)	(/)	(C)	(ppm)	(NTU)	(mV)
13:10	26.27	1197	3020	24.23	10.31	22.3	079
13:13	28.13	12 24	3.70	21.35	3.05	17 4	7
13:20	12./4	1114	3 108	20.28	172	15.5	38.3
12:23	19.55	12.02	3.257	20 20	113	10.1	50.4
12:30	30.35	12.00	3.101	21.30	a.92	101	25 4
11:35	31.11	12.18	3 113	21.95	0.78	2.10	-0.9
12:46	31.98	12 00	3.019	21.13	0.89	0.83	~ 4 .7
12:45	32.66	12.07	3.039	21.32	0.92	0.23	-44.Q
12:33	33-23	12.00	307	27.04	0.8	m.35	-40 O
13:55	<- A	1200	06	Craz-O	<u> </u>	U.J.S	10.0
1,000	2.2.6	Time					
							
·							
Purge Start Time:	17:10			Approx. Purge	Rate:	100	ml/min
Purge End Time:	12:50		•	Approx. Well V			
Sampler:	Mas		•	Total Volume P			
-			•	Well Volume (ga	_	t of water)(0.1	63)
				(6			,
Weather:	Senny Car	Low 7	<i>ta'</i> 5				
	1	-1					
Comments:	Tome last	ن حط المحمد ا	Souled la	4-24.5	man bush	dain for	w) Cell
4	3)	130 191	84~2F1.5	//		
Signature:	$M \leq II$				Date:	0/26	
- 17	11 35	17			40	17/40	

Site:	NSA Mechanicsburg	Tubing Diameter:	
Project No.:	1041	Depth to Groundwater:	3/.7/
Sampling Device:	Bladder pump	Well Depth:	189
Date:	6-29-2020	Feet of Water:	157.29
Well I.D.:	503M73D1	Volume of Water in Well:	

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
11:20	31,71	7.72	0.266	24,41	22.21	9.23	25.1
11:25	31.71	7.52	0.703	24.52	11.90	9.94	37.8
10:30	31.71	6.48	0.093	17.95	8.65	6.10	73.0
11:35	31,72	6.54	0.122	17.48	5.64	8.43	-22.0
11:40	31.75	7.04	0.227	17.66	3.56	2.32	-56.9
11:45	31.78	7.14	0.392	17.63	3.20	8.47	-63.0
11:50	31,84	7.10	0.459	17.74	2.61	2,51	-69.9
11:55	31.88	7.08	0,486	17.83	2.41	8.53	-68.7
12:06	31.41	7.10	0.491	17.94	2.27	2,57	-65.C
		<u> </u>					
							-
		-					
	+		+				.
			 		· -		-

Purge Start Time:	11:20	Approx. Purge Rate:	310 ml/min
Purge End Time: Sampler:	12:00 I. Kryusor	Approx. Well Volume: Total Volume Purged: Well Volume (gal.) (2'' well)= (fi	8 4 l
Weather:	85°-90° Sunny	,, on voranie (gan) (2 , ven) (1	
Comments:			
Signature:	ラースオー	Date: 4-3	15-2020

Site:	NSA Mechanicsburg	Tubing Diameter:	
Project No.:	1041	Depth to Groundwater:	31.68 /Post pup J.15. 25.8c
Sampling Device:	Bladder pump	Well Depth:	349
Date:	6/25/2020	Feet of Water:	317.37
Well I.D.:	503 M73 D2	Volume of Water in Well:	

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
09:40	25.80	7.29	0.665	24.19	493		-55.4
09145	27.30	7.30	0.669	24.44	6.31		-47.8
C9:50		Pun		lens			
08:55			V	Remark Prom	· Le Asser	let	
10:00	31.46	7.52	0.504	24.59	7.83	9.58	11.0
10:05	31 95	7.50	0.456	29.48	8-20	9.62	14.8
10:15	32,40	7.57	0.436	72.96	8.70	9.79	17.4
10:85	32.90	7.45	0.366	20.42	10.66	11.1	19.9
10:30	33.23	7.50	0.365	19.61	11.54	10.5	7.4
10:25	33.65	7.51	0.367	19.39	11.50	10.3	0.9
10:30	33.87	751	0.371	19.34	11.80	10.8	18.3
10:35	33.99	7.50	0.373	19 29	11-64	10.7	-24.3
						1	
	1						

Purge Start Time:	09:40	Approx. Purge Rate: 730 ml/min
Purge End Time:	10:35	Approx. Well Volume:
Sampler:	J. Luguser	Total Volume Purged: 991
	•	Well Volume (gal.) (2" well)= (ft of water)(0.163)
Weather:	80-90 sung Clun	
Comments:	<u> </u>	
Signature:	7-RX	Date: 6/26 / 2020

Date: 7/1/20

MUEW 14							
Site: NSA Mechanicsburg		anicsburg		Tubing Diamet			
Project No.:	1041		Depth to Groundwater:			25.49	
Sampling Device:	Bladder		•	Well Depth:			
Date:	7/1/20			Feet of Water:			
Well I.D.:	<u>-00-7</u>		•	Volume of Wat	er in Well:		
	Depth to		Specific	Temper-	Dissolved		
	Water	pН	Conductance	ature	Oxygen	Turbidity	Redox
Time	(ft TOR)	(s.u.)	2 2 2 3	(C)	(ppm)	(NTU)	(mV)
1:50	35.70	7.93	5.531	16.91	7.05	13.4	137.9
1:35 (1:32	125.70	6.95	0.195	17.73	7.00	19-0	16.1
4:00	23.47	791	8.33	17.00	3.00	8.02	10.4
4:05	25.84	694	0.251	14.43	3.28	8.13	167.1
7:15	25.47	707	A 269	14 72	3.32	2.65	148.1
9:20	25 44	2 a	0.257	14 30	3.38	6.68	146.0
9:25	3000	7		1100	0.00		112.0
	30000	- lime					
	<u> </u>						
	_		-			ļ	
		<u> </u>				-	
	 	<u> </u>				<u> </u>	
						<u> </u>	
	 						
		<u> </u>				1	
Purge Start Time:	8:50			Approx. Purge	Rate:	250	ml/min
Purge End Time:	9:20		•	Approx. Well V			
Sampler:	TRF/M	43		Total Volume I			
				Well Volume (ga	l.) (2" well)= (f	t of water)(0.1	63)
	<	, LOW T					
Weather:	JIMMY.	, LUN 1	<u>07 </u>				
	6						
Comments:							

Signature:

Site:	NSA Mechanicsburg	Tubing Diameter:	
Project No.:	1041	Depth to Groundwater:	22.72
Sampling Device:	Bladder pump	Well Depth:	Bo'
Date:	7-1-2074	Feet of Water:	107.28
Well I.D.:	00-70	Volume of Water in Well:	

Time	Depth to Water (ft TOR)	pH (s.u.)	Specific Conductance (/)	Temper- ature (C)	Dissolved Oxygen (ppm)	Turbidity (NTU)	Redox (mV)
12105	22.72	8,77	0.381	73.09	14.90	1214	75.3
12:10	23.24	7.11	0.961	17.06	8,02	8.01	89.1
13:15	23.32	7.14	0.481	16.64	5.10	8.10	88,9
12:20	23.62	7.05	0.473	15.83	5.05	7.61	95.5
12:25	23.77	7.04	0.473	15,53	5,20	6.05	98.9
12:30	23.76	7,08	0.475	15.32	5.28	5.88	101.4
12135	23,77	7.67	0.475	15,24	5.31	5.67	103,2
12540	23.78	7.07	0.476	15.20	5.30	5.69	104.1
		·	1				-
						· · · · · ·	
				·.			
-			 	.	 	-	

Purge Start Time: Purge End Time:	12:05	Approx. Purge Rate: Approx. Well Volume:		
Sampler:	J. Fugusur	Total Volume Purged: Well Volume (gal.) (2'' well)=	7.000m/ = (ft of water)(0.163)	
Weather:	SUMMY 880-900			
Comments:		<u> </u>		
Signature:	75	Date: 7/	11/2020	

PROJECT NAME	NSA Mechanicsburg	Y	SAMPLE I.D. 503M01-070120
PROJECT No.	1041		WELL NO. 503 MOI
SAMPLE DATE	July 1, 2026		SAMPLED BY J. Fergusen
SAMPLE TIME	11:30		SAMPLE SEQUENCE NUMBER
COLLECTION EQUI	PMENT Bladder pur	np	
DEPTH TO WATER	PRIOR TO SAMPLING (FT)	27.96	

	FIELD MEASUREMENTS	
pH	Standard Units	6.98
Specific Conductance	mS/cm	0.797
Water Temperature	°C	13.50
Dissolved Oxygen	ppm	8.69
Redox Potential	mV	103.9
Turbidity	NTU	5.81

WATER APPEARANCE OR ODORS	Gen	
SAMPLING FLOW RATE	ခ/ပ mL/min	

SAMPLE TYPE INFORMATION						
PARAMETER	VOLUME NO. CONTAINERS		FIELD FILTERED		PRESERVED	
VOCs	40 ml	3	Y	M	11C1	N
PCBs	250 ml 500ml	2	Y	N	Y	4
Metals	500ml	1	Y	(N)	W HNOS	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N

TOTAL NO. OF CONTAINERS	
LABORATORY 565	DELIVERED VIA COUSISS-565 DATE 71-2020
WEATHER 88°-90° SUN MY	
COMMENTS	

Date: 7/1/2020

Signature:	D	
Admin/Forms/E	invironmental/water sample collection report	

PROJECT NAME NSA Mechanics	burg	SAMPLE I.D. 503MB3 - 6639 26
PROJECT No. 1041		WELL NO. SO3MOJ
SAMPLE DATE 6/29/2020	 :-	SAMPLED BY J. Logson SAMPLE SEQUENCE NUMBER
SAMPLE TIME 14:15		SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Blade	der pump	
DEPTH TO WATER PRIOR TO SAMPLING	(FT) 32-84	

	FIELD MEASUREMENTS	
рН	Standard Units	7.52
Specific Conductance	mS/cm	0.824
Water Temperature	°C	17.15
Dissolved Oxygen	ppm	11,38
Redox Potential	mV	97.4
Turbidity	NTU	16.2

WATER APPEARANCE OR ODORS	Clan	
SAMPLING FLOW RATE	190 mL/min	

SAMPLE TYPE INFORMATION								
Parameter	PARAMETER VOLUME No. CONTAINERS FIELD FILTERED PRESERVE							
VOCs	40 ml	3	Y	N	1KL	N		
PCBs	250 ml 500 ml	Э	Y	Ø.	Y	Ø		
Metals	500 ml	,	Y	M	CO 14403	N		
			Y	N	Y	N		
			Y	N	Y	N		
			Y	N	Y	N		
			Y	N	Y	N		

TOTAL NO. OF C	CONTAINERS	6				
LABORATORY	565		DELIVERED VIA	365	Corner	DATE 6/29/20
WEATHER	85-90°	Sonny				
COMMENTS						

Signature:	7	-PX	\	•
Admin/Forms/Er	vironmental/	water sample	collection report	

Date: 6/29/2020

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. 503M63-062920
PROJECT No. 1041	WELL No. 503M03
SAMPLE DATE Jun 29, 2020	SAMPLED BY J. Fugue
SAMPLE TIME 07:40 (19:40)	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT) 31.	47

FIELD MEASUREMENTS				
рН	Standard Units	6.91		
Specific Conductance	mS/cm	0.579		
Water Temperature	°C	15.54		
Dissolved Oxygen	ppm	1.99		
Redox Potential	mV	-106.3		
Turbidity	NTU	9.81		

WATER APPEARANCE OR ODORS	Ceca		 -	
SAMPLING FLOW RATE		<i>3∤6</i> mL/min		

	SAMPLE TYPE INFORMATION							
PARAMETER	PARAMETER VOLUME No. CONTAINERS FIELD FILTERED PRESERVED							
VOCs	40ml	3	Y	N	YHEL	N		
PCBs	250ml	Э	Y	(30)	Y	(B)		
Metals	500 ml	1	Y	80)	O 14403	N		
			Y	N	Y	N		
			Y	N	Y	N		
			Y	N	Y	N		
			Y	N	Y	N		

TOTAL NO. OF (CONTAINERS	6			
LABORATORY	565		DELIVERED VIA	365 Courin	DATE 6/30/2016
WEATHER	85-900	Sung			
COMMENTS		8			

Signature:

Date: 6/39/2020

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. 503M07 -069020
PROJECT No. 1041	WELL NO. 203MO7
SAMPLE DATE Jul 29 2020	SAMPLED BY J. Kiguson
SAMPLE TIME 16:00	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT) 31.84	

	FIELD MEASUREMENTS					
pН	Standard Units	7.3/				
Specific Conductance	mS/cm	0,582				
Water Temperature	°C	20.94				
Dissolved Oxygen	ppm	5.40				
Redox Potential	mV	-89.6				
Turbidity	NTU	14.61				

WATER APPEARANCE OR ODORS	Clan	
SAMPLING FLOW RATE	226 mL/min	

	SAMPLE TYPE INFORMATION					
PARAMETER	Volume	No. Containers	FIELD I	FILTERED	PRESERV	ÆD
VOCs	40ml	3	Y	(N)	@ HCL	N
PCBs	40ml 250ml	2	Y	W	Y	W.
Metals	500ml	/	Y	(3)	1/403	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N

TOTAL NO. OF	CONTAINERS	6		
LABORATORY	565		DELIVERED VIA Courser - 565	DATE C/34/2020
WEATHER	89°-90°	Song		
COMMENTS				

 Date: 6/35/3000

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. 52413 - 023020
PROJECT No. 1041	WELL NO. 503113
SAMPLE DATE 6/30/20	SAMPLED BY MRS
SAMPLE TIME 9:30	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT) 33.47	

	FIELD MEASUREMENTS				
pH	Standard Units	7.00			
Specific Conductance	mS/cm	0.385			
Water Temperature	°C	16.66			
Dissolved Oxygen	ppm	1.39			
Redox Potential	mV	-840			
Turbidity	NTU	0.78			

WATER APPEARANCE OR ODORS	Clear	Noodors	
SAMPLING FLOW RATE	150	mL/min	

	SAM	IPLE TYPE INFORMATION	ON			
PARAMETER	VOLUME	No. Containers	FIELD I	FILTERED	Presi	ERVED
VOCs	Homb	3	Y	(N)	7	N
PCBs	300mb	Ž	Y	N	Y	(N)
Metals	500m)	1	Y	(N)	(Y)	Ŋ
			Y	N	Ÿ	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N

TOTAL No. of Containers		1
LABORATORY 545	DELIVERED VIA	DATE 30/20
WEATHER SUMMY M.C. 70'S COMMENTS		
Signature: M		Date: 430/20

Admin/Forms/Environmental/water sample collection report

Admin/Forms/Environmental/water sample collection report

WATER SAMPLE COLLECTION REPORT

PROJECT NAME NS	A Mechanicsburg	SAM	IPLE I.D.	SMY O	()425	1
PROJECT No. 10	<u> </u>	WEI	LNo.	3 WILL	Aben I Our	<u> </u>
SAMPLE DATE	24/26	SAM	IPLED BY	TARK		·
SAMPLE TIME	1:10	SAM	IPLE SEQUE	NCE NUMBE	ER	<u> </u>
COLLECTION EQUIPMENT	т Bladder pur	np				
DEPTH TO WATER PRIOR	TO SAMPLING (FT)	D21.32				· -
						
	FIE	LD MEASUREMEN	TS			<u> </u>
pН		Standard Units		7.10		
Specific Conduct	ance	mS/cm		0,334	1	
Water Temperat	ure	°C		18.00	ì	······································
Dissolved Oxyg	en	ppm		1 6	ξ	
Redox Potentia	al	mV		-08.	<u>x</u>	
Turbidity		NTU		0 84	1	
WATER APPEARANCE OR SAMPLING FLOW RATE	1.00 1.00	Moderate mL/min			×	
	SAM	DI E TVDE INCODMATI	ON		<u></u> .	
PARAMETER		PLE TYPE INFORMATI		TI TEDED	Por	SERVER
PARAMETER	VOLUME	PLE TYPE INFORMATI No. CONTAINERS	FIELD I	TILTERED		SERVED
VOCs			FIELD F	Ø	(Y)	N
VOCs PCBs	YOLUME YOWL 300 MC		FIELD F	(N)	Y Y	
VOCs	VOLUME		FIELD F Y Y Y	Ø	(Y)	N N
VOCs PCBs	YOLUME YOWL 300 MC		Y Y Y Y	P P N	Y Y Y	N N N
VOCs PCBs	YOLUME YOWL 300 MC		FIELD F Y Y Y Y Y Y	N N N	Y Y Y Y	N N N
VOCs PCBs	YOLUME YOWL 300 MC		Y Y Y Y Y Y Y Y Y	N N N	Y Y Y Y	N N N N
VOCs PCBs	YOLUME YOWL 300 MC		FIELD F Y Y Y Y Y Y	N N N	Y Y Y Y	N N N
VOCs PCBs Metals	YOLUME YOLUME YOLUME SOOML SOOML		Y Y Y Y Y Y Y Y Y	N N N	Y Y Y Y	N N N N
VOCs PCBs	YOLUME YOLUME YOLUME SOOML SOOML	No. Containers	Y Y Y Y Y Y Y Y	N N N	Y Y Y Y	N N N N
VOCs PCBs Metals Total No. of Contains Laboratory Weather	VOLUME YOWL BOOML BOWNL		Y Y Y Y Y Y Y Y	N N N	Y Y Y Y Y Y	N N N N
VOCs PCBs Metals Total No. of Contains Laboratory	VOLUME YOWL BOOML BOWNL	No. Containers	Y Y Y Y Y Y Y Y	N N N	Y Y Y Y Y Y	N N N N

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. 303M15 - 063026
PROJECT No. 1041	WELL NO. 503M15
SAMPLE DATE June 30, 2020	SAMPLED BY J. Linguson
SAMPLE TIME 11:45	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT)	31.63

"	FIELD MEASUREMENTS	- 63
pH	Standard Units	7.65
Specific Conductance	mS/cm	0.916
Water Temperature	°C	21.51
Dissolved Oxygen	ppm	2.88
Redox Potential	mV	-114.5
Turbidity	NTU	2.35

WATER APPEARANCE OR ODORS	Clocan	
SAMPLING FLOW RATE	2/6 mL/min	

	SAMPLE TYPE INFORMATION					
Parameter	PARAMETER VOLUME NO. CONTAINERS FIELD FILTERED PRESERVED					VED
VOCs	40ml	3	Y	N	(V) IKI	N
PCBs	40ml 250ml 500 ml	2	Y	M	Y	N
Metals	500 ml	1	Y	Ø.	@ HNO3	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N

TOTAL NO. OF CONTAINERS		
LABORATORY 565	DELIVERED VIA 565 Courser	DATE 6/30/20
WEATHER 85-90° Sunn		, ,
COMMENTS		

Signature:		

Date: 6/30/20

PROJECT NAME NSA Mechanicsburg		SAMPLE I.D. So 3 m 16 - 06 2 3 2 6
PROJECT NO. 1041		WELL NO. So 3 MIL
SAMPLE DATE 6/23/20		SAMPLED BY BAM
SAMPLE TIME 1745		SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pun	np	
DEPTH TO WATER PRIOR TO SAMPLING (FT)	26.97	

FIELD MEASUREMENTS			
pH	Standard Units	6.60	
Specific Conductance	mS/cm	0.417	
Water Temperature	°C	17.91	
Dissolved Oxygen	ppm	6.97	
Redox Potential	mV	70.9	
Turbidity	NTU	35.2	

WATER APPEARANCE OR ODORS

Sightly turbid w/ ivon

SAMPLING FLOW RATE

200 mL/min

SAMPLE TYPE INFORMATION						
PARAMETER	VOLUME	No. Containers	FIELD	FILTERED	PRESERV	ÆD
VOCs	40 ml	3	Y	(N)	YHCe	N
PCBs	300 ml	2	Y	N	Y	(N)
Metals	500 ml	1	Y	(N)	Y HNO3	N
			Y	N	Y	N
8			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N

TOTAL NO. OF C	CONTAINE	RS 6			
LABORATORY	SGS	Accutat	DELIVERED VIA	Counter	DATE 6/24/20
WEATHER	hot	mid 80s		,	
COMMENTS		^			
	17,5	/ /			1 701

Signature:

Date: 6/23/20

Admin/Forms/Environmental/water sample collection report

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. 503M7 - 062420
PROJECT No. 1041	WELL NO. SO3M17
SAMPLE DATE 06/24/20	SAMPLED BY BAM
SAMPLE TIME 10:05	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT) 22.54	

	FIELD MEASUREMENTS	
рΉ	Standard Units	6-60 6-42
Specific Conductance	mS/cm	0.627
Water Temperature	°C	17-91
Dissolved Oxygen	ppm	0.66
Redox Potential	mV	-50.9
Turbidity	NTU	5.33

WATER APPEARANCE OR ODORS

Clear w black particles

SAMPLING FLOW RATE

Do mL/min

	SA	MPLE TY	PE I	NFOR	MATIC	ON			
PARAMETER	Volume	No	o. Cor	NTAINI	ERS	FIELD 1	FILTERED	PRESER	VED
VOCs	40 ml	3	3	3	3	Y	(N)	YHCE	N
PCBs	300 ml	2	2	2/	1	Y	(N)	Y	N
Metals	500 ml	1	1 1 /	17	1	Y	(N)	Y)HNO3	N
		·				Y	N	Y	N
Geochen						Y	N	Y	N
DNA (to Microb	(LK)					Y	N	Y	N
Insight				•		Y	N	Y	N

TOTAL No. C	F CONTAINERS	19						
LABORATOR	Y SGS Acci	west	DELIVE	RED VIA	Count	DATE	6/20	1/20
WEATHER	701		<u> </u>			<u>L</u>		-
COMMENTS	W2/W2D	Duplicate	samples	collect	ed	Geochem	DNI	4
Signature:	ronmental water sample	do -	No.			Date:	6/24	

PROJECT NAME NSA Mechanicsburg	1	SAMPLE I.D. 503 M18 - 062420
PROJECT No. 1041		WELL NO. 363M/8
SAMPLE DATE Jun 24, 2020		SAMPLED BY J. Fergusian
SAMPLE TIME 10:35	1	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump		
DEPTH TO WATER PRIOR TO SAMPLING (FT)	22.90	

	FIELD MEASUREMENTS	
pH	Standard Units	7.02
Specific Conductance	mS/cm	0,397
Water Temperature	°C	20.18
Dissolved Oxygen	ppm	0.92
Redox Potential	mV	-112.5
Turbidity	NTU	2.3/

WATER APPEARANCE OR ODORS	Clan	<u> </u>
SAMPLING FLOW RATE	190 mL/min	

SAMPLE TYPE INFORMATION						
PARAMETER	Volume	No. Containers	FIELD F	ILTERED	Preserv	ÆD
VOCs	40~1	3	Y	N	DACL	N
PCBs	250m1	ð	Y	N	Y	W,
Metals	500 ml	/	Y	Ø	(V)HO3	N
GEOCHEST PARENT	multiple	lastones	0	N	O	N
MHH PARAM	multiple 3-40ml	3	Y	(D)	Y	Ø
Backfin Parmets	10	,	Y	(A)	Y	B
			Y	N	Y	N

TOTAL NO. OF CONTAINERS SEE More			
LABORATORY 565/MICROBIAL INSIGHTS	DELIVERED VIA 363	fel by	DATE 4/24/20
WEATHER \$5-90° Sung		-	
COMMENTS DEDICATE CONTROLLE			

Signature:

Admin/Forms/Environmental/water sample collection report

Date: 6/24/20

Admin/Forms/Environmental/water sample collection report

WATER SAMPLE COLLECTION REPORT

PROJECT NAME NSA	Mechanicsburg	SAM	PLE I.D.	2 M20	m/ hunc	
PROJECT No. 104			L No.	23M70	062426	<u> </u>
	24/2020		PLED BY	000/000	<u> </u>	
SAMPLE TIME	:15	SAM	PLE SEQUE	NCE NUMBI	ER	
COLLECTION EQUIPMENT	Bladder pum	p				
DEPTH TO WATER PRIOR	TO SAMPLING (FT)	1.05	 -			
	FIEL	D MEASUREMEN	rs	 -		
рН		Standard Units		7.4	ζ	
Specific Conducta	nce	mS/cm		0/13	3	
Water Temperatu	re	°C		17.4	16	, , , , , , , , , , , , , , , , , ,
Dissolved Oxyge		ppm		6.0	5	
Redox Potential		mV		WI.	3	
Turbidity		NTU		12.	0	
		LE TYPE INFORMATION	ON			
Parameter	SAMP Volume	LE TYPE INFORMATION No. CONTAINERS	FIELD I	FILTERED		SERVED
VOCs			FIELD I	FILTERED	Pres	N
	Volume		FIELD I	(h)	(Ý) Y	N (N)
VOCs	VOLUME 40ML	No. Containers	Y Y Y	Q		N N
VOCs PCBs	VOLUME 40ML	No. Containers	Y Y Y Y	Z Z Z	(V) (V) Y	N N
VOCs PCBs	VOLUME 40ML	No. Containers	Y Y Y Y Y Y	N N	Ý Ý Y	N N N
VOCs PCBs	VOLUME 40ML	No. Containers	Y Y Y Y Y Y Y Y Y	N N N N	Y Y Y Y Y	N N N N
VOCs PCBs	VOLUME 40ML	No. Containers	Y Y Y Y Y Y	N N	Ý Ý Y	N N N
VOCs PCBs Metals	VOLUME 3 40 ml 3 300 ml	No. Containers	Y Y Y Y Y Y Y Y Y	N N N N	Y Y Y Y Y	N N N N
VOCs PCBs	VOLUME 3 40 ml 3 300 ml	No. Containers 2	Y Y Y Y Y Y Y Y	(Z) (Z) (Z) (Z) (Z) (Z) (Z) (Z) (Z) (Z)	Y Y Y Y Y	N N N N
VOCs PCBs Metals Total No. of Container	VOLUME 3 40 ml 3 300 ml Souml	No. Containers	Y Y Y Y Y Y Y Y	(Z) (Z) (Z) (Z) (Z) (Z) (Z) (Z) (Z) (Z)	Y Y Y Y Y	N N N N
VOCs PCBs Metals Total No. of Contained Laboratory	VOLUME 3 40 ml 3 300 ml	No. Containers 2	Y Y Y Y Y Y Y Y	(Z) (Z) (Z) (Z) (Z) (Z) (Z) (Z) (Z) (Z)	Y Y Y Y Y	N N N N

PROJECT NAME NSA Mechanicsburg		SAMPLE I.D. 503M21 - 062920
PROJECT No. 1041	-	WELL NO. 563M21
SAMPLE DATE JUNE 29		SAMPLED BY J. Fergusen
SAMPLE TIME 17:50	-	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump)	
DEPTH TO WATER PRIOR TO SAMPLING (FT)	22.91	

	FIELD MEASUREMENTS		
pH	Standard Units	7,22	
Specific Conductance	mS/cm	0,439	
Water Temperature	°C	17.29	
Dissolved Oxygen	ppm	9.80	
Redox Potential	mV	111.5	
Turbidity	NTU	8.36	

WATER APPEARANCE OR ODORS	C/m	
SAMPLING FLOW RATE	∂00 mL/min	

	SAMPLE TYPE INFORMATION					
PARAMETER	VOLUME	No. Containers	FIELD I	TILTERED	Preserv	/ED
VOCs	40 ml	3	Y	N	Y HEL	N
PCBs	40 ml 250ml 500ml	2	Y	(N)	Y	Ø
Metals	500 ml	/	Y	(V)	W HAUZ	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N

TOTAL NO. OF CONTAINERS	
LABORATORY 565	DELIVERED VIA SGS CONTER DATE 0/30/20
WEATHER 85-90° SUNNY	
COMMENTS	

Signature:

Date: 6/29/20

PROJECT NAME NSA MECHANICS DE	SAMPLE I.D. 503M22-062520			
PROJECT NO. 1041	WELL NO. 53M22			
SAMPLE DATE 6/15/20	SAMPLED BY MRS			
SAMPLE TIME 6:30	SAMPLE SEQUENCE NUMBER			
COLLECTION EQUIPMENT BLADER PUMP				
DEPTH TO WATER PRIOR TO SAMPLING (FT) 26.27				
FIELD MEASUREMENTS				

FIELD MEASUREMENTS		
рН	Standard Units	6.04
Specific Conductance	mS/cm	0-520
Water Temperature	°C	16.94
Dissolved Oxygen	ppm	3.23
Redox Potential	mV	83.0
Turbidity	NTU	39.7

WATER APPEARANCE OR ODORS SAMPLING FLOW RATE

Tubid ny brantint, No orbos 250 mymin

SAMPLE TYPE INFORMATION						
PARAMETER	Volume	No. Containers	FIELD I	ILTERED	PRE	SERVED
V0C5	Home	3	Y	Ŵ	(V)	N
PCBS	Booml	Ž.	Y	N	Y	(1)
Metals	500ml	1	Y	N)	(Y)	N
-	,		Y	N	Y	N
		22	Y	N	Y	·N
15			Y	N	Y	N
			Y	N	Y	N

TOTAL NO. OF CONTAINERS		, ,
LABORATORY SGS	DELIVERED VIA	DATE ()()
WEATHER CLASS, LOW XO'S		
COMMENTS		

Signature:

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. SO3M41 - 062520
PROJECT No. 1041	WELL NO. SOWA)
SAMPLE DATE 6/25/20	SAMPLED BY MRS
SAMPLE TIME 12:45/12:50	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT) 29.22	

	FIELD MEASUREMENTS		
рН	Standard Units	6.7%	
Specific Conductance	mS/cm	2467	
Water Temperature	°C	18.82	
Dissolved Oxygen	ppm	0.85	
Redox Potential	mV	-(6.0	
Turbidity	NTU	29.7	

WATER APPEARANCE OR ODORS

Tubid w/ bubbes, policiem odor

SAMPLING FLOW RATE

100 mL/min

	SAMPLE TYPE INFORMATION					
Parameter	VOLUME	No. Containers	FIELD 1	TILTERED	PRES	SERVED
VOCs	Hom	3	Y	(A)	(Ý)	N
PCBs	300 ml	2	Y	M	Y	(7)
Metals	Sooral		Y	(A)	(V)	N
Geothen		12	Ø	80	1	N
AUG	12	1	Y	(N)	Y	(4)
, <u>, </u>			Y	N	Y	7
			Y	N	Y	N

TOTAL NO. OF CONTAINERS	
LABORATORY S Microbial	DELIVERED VIA GOCER CENTEX DATE (25) 20
WEATHER SLOWING LOW 805	
COMMENTS (COKCKE dept cook	2-12:50
Signatura: Mr A	D. Cheha

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. 5031144 - 063030
PROJECT No. 1041	WELL NO. 503M 44
SAMPLE DATE JUHE 30, 2026	SAMPLED BY J. Ferguson
SAMPLE TIME 13:50	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT) 33 97	

FIELD MEASUREMENTS			
pH	Standard Units	7.24	
Specific Conductance	mS/cm	0.752	
Water Temperature	°C	17.16	
Dissolved Oxygen	ppm	5.64	
Redox Potential	mV	77.6	
Turbidity	NTU	5.64	

WATER APPEARANCE OR ODORS	Clean	<u> </u>
SAMPLING FLOW RATE	200 mL/min	

SAMPLE TYPE INFORMATION						
Parameter	Volume	No. Containers	FIELD	FILTERED	PRESERV	ÆD
VOCs	Youl	3	Y	N	T) HC1	N
PCBs	40 ml 350 ml	2	Y	W	Y	Q
Metals	500ml	/	Y	(N)	1 HNO3	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N
		<u> </u>	Y	N	Y	N

TOTAL NO. OF CONTAINERS		
LABORATORY 365	DELIVERED VIA 565 CONTES	DATE 6/30/20
WEATHER 850-906 Sanny		
COMMENTS		

Signature:

Admin/Forms/Environmental/water sample collection report

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. 503 M 45 - 063020
PROJECT No. 1041	WELL No. 503M45
SAMPLE DATE 6 30 2020	SAMPLED BY J. Ferguson
SAMPLE TIME 09:50	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT) 34 76	

	FIELD MEASUREMENTS				
рН	Standard Units	7.69			
Specific Conductance	mS/cm	0.488			
Water Temperature	°C	16.14			
Dissolved Oxygen	ppm	2.60			
Redox Potential	mV	94.3			
Turbidity	NTU	248			

WATER APPEARANCE OR ODORS	Um	
SAMPLING FLOW RATE	ුර mL/min	

	SAMPLE TYPE INFORMATION					
Parameter	Volume	No. Containers	FIELD I	FILTERED	Preserv	ΈD
VOCs	40m1	3	Y	(N)	@ HCI	N
PCBs	40ml 250ml 500ml	9	Y	(A)	Y	Q
Metals	500m1	l	Y	N	(3) HHOZ	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N

TOTAL NO. OF CONTAINERS	
LABORATORY 565	DELIVERED VIA 365 CONTEX DATE 6/30/2020
WEATHER 8590° Smy	
COMMENTS	

Signature:

Admin/Forms/Environmental/water sample collection report

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. 503M46 - 0630Z0
PROJECT No. 1041	WELL NO. 503M46
SAMPLE DATE JUNE 30, 2070	SAMPLED BY J. Furguson
SAMPLE TIME 15:00	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT)	

FIELD MEASUREMENTS		
рН	Standard Units	7.24
Specific Conductance	mS/cm	0.956
Water Temperature	°C	18.79
Dissolved Oxygen	ppm	1,70
Redox Potential	mV	24.4
Turbidity	NTU	5.14

WATER APPEARANCE OR ODORS	CIENN	
SAMPLING FLOW RATE	zoo mL/min	

SAMPLE TYPE INFORMATION						
PARAMETER	VOLUME	No. CONTAINERS	FIELD I	FILTERED	PRESERV	/ED
VOCs	40 ml	3	Y	N	(E) He)	N
PCBs	250 ml	2	Y	N	Y	W
Metals	500 ml	/	Y	(V)	E) HNO3	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N

TOTAL NO. OF (CONTAINERS	6		
LABORATORY	565		DELIVERED VIA COLCEC	DATE 7/1/20
WEATHER	85° - 96°	Sonry		47
COMMENTS				

Signature:

Admin/Forms/Environmental/water sample collection report

PROJECT NAME	NSA Mechanicsburg		SAMPLE I.D. 503M42-067576
Р ROJECT NO.	1041		WELL NO. 303MYE
SAMPLE DATE	Ju 25,2020		SAMPLED BY J. Reguson
SAMPLE TIME	13.45		SAMPLE SEQUENCE NUMBER
COLLECTION EQU	JIPMENT Bladder pump		
DEPTH TO WATER	R PRIOR TO SAMPLING (FT)	23.66	

FIELD MEASUREMENTS		
рН	Standard Units	7.00
Specific Conductance	mS/cm	0.7/7
Water Temperature	°C	20.36
Dissolved Oxygen	ppm	3.98
Redox Potential	mV	127.3
Turbidity	NTU	9.86

WATER APPEARANCE OR ODORS	Clan	
SAMPLING FLOW RATE	300 mL/min	

	SAM	PLE TYPE INFORMATI	ON	•		46
PARAMETER	Volume	No. Containers	FIELD]	TILTERED	Preserv	VED
VOCs	40ml	3	Y	(N)	WIKL	N
PCBs	250 ml	2	Y	N	Y	(1)
Metals	500 m 1	,	Y	Ø	# 1/NO3	(N)
Geocher Parameters	miltiple	Costunes	C	N	03 1/N/03	N
MNA	40ml	3	Y	Ø.	Y	(P)
Brekena	12	/	Y	No	Y	Ø
	,		Y	(N)	Y	N

TOTAL NO. OF CONTAINERS MALLAL See when		
LABORATORY 365 / MILIOLAND FINSIGHTS	DELIVERED VIA 565 / Kep Ex	DATE 6/25/2020
WEATHER 250-9000		
COMMENTS		
Signature:		Date: 6/25/2020

Admin/Forms/Environmental/water sample collection report

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. 503M49 -062520
PROJECT NO. 1041	WELL NO. 563M49
SAMPLE DATE Jun 25, 2020	SAMPLED BY J. Fire som
SAMPLE TIME 16:31	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT) 16.43	

FIELD MEASUREMENTS		
pH	Standard Units	6.86
Specific Conductance	mS/cm	0.774
Water Temperature	°C	16.49
Dissolved Oxygen	ppm	8.10
Redox Potential	mV	5.0
Turbidity	NTU	43.1

WATER APPEARANCE OR ODORS	Slightly Closh	
SAMPLING FLOW RATE	<i>3/0</i> mL/min	

SAMPLE TYPE INFORMATION						
PARAMETER	VOLUME	No. Containers	FIELD I	ILTERED	PRESER	VED
VOCs	40 m 1	3	Y	18	MIKL	N
PCBs	250 ml	ð	Y	W	Y	
Metals	500 ml	1	Y	8	OD HNO3	N
GEOCHEM 15TRY		MULTIPLE	0	N	Y	N
MNA	46ml	3	Y	₫	Y	N
DECULORMANUS BACK.	1000 ml	1	Y	AT)	Y	N
/			Y	N	Y	N

TOTAL NO. OF CONTAINERS	M	
LABORATORY 565 / MICROBIAL INSIGHTS	DELIVERED VIA Courser / KEDGY DATE 6/25-26,	2020
WEATHER 850, 900 Grany		
COMMENTS		

Signature:

Admin/Forms/Environmental/water sample collection report

Date: 6/25 /2020

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. 503M60 - 662520
PROJECT No. 1041	WELL NO. 503M50
SAMPLE DATE (2/25/26)	SAMPLED BY MCS
SAMPLE TIME 9:30/9:35/9:40/9:45	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT) Q.85	

	FIELD MEASUREMENTS	
рН	Standard Units	6.92
Specific Conductance	mS/cm	1.092
Water Temperature	°C	17.01
Dissolved Oxygen	ppm	3.08
Redox Potential	mV	-27.0
Turbidity	NTU	51.4

	SAMPLE TYPE INFORMATION					
PARAMETER	Volume	No. Containers	FIELD F	ILTERED	PRESE	RVED
VOCs	40ml	3	Y	N	(2)	N
PCBs	30011	2	Y	(N)	Y	10
Metals	ROOML		Y	Ø	(2)	N
Geochem	iqu	12	(8)	N	Y	N
440	11	<u> </u>	Y	(4)	Y	(N),
			Y	Й	Y	- N
			Y	N	Y	N

I	OF CONTAINERS 19	æ		
LABORATOR	YSGS Microbial		DELIVERED VIA	FEDEX DATE 6/15/20
WEATHER	Juny, Low 70'S		1	1
COMMENTS	Collected	Deo/Mi	SMSD	
Signature:	MS		Jup: 9:35	Date: (15/20

Admin/Forms/Environmental/water sample collection report

MS: 9:40

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. 503M51-062520
PROJECT No. 1041	WELL NO. 503M 51
SAMPLE DATE Jun 33, 2020	SAMPLED BY J. Las Susan
SAMPLE TIME 18:30	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT)	λ

FIELD MEASUREMENTS				
рН	Standard Units	7.7/		
Specific Conductance	mS/cm	0.383		
Water Temperature	°C	17.27		
Dissolved Oxygen	ppm	12.04		
Redox Potential	mV	134.4		
Turbidity	NTU	467		

WATER APPEARANCE OR ODORS	Clars	
SAMPLING FLOW RATE	ခရံပ mL/min	

SAMPLE TYPE INFORMATION						
PARAMETER	Volume	No. Containers	FIELD F	ILTERED	Preserv	ÆD.
VOCs	\$0ml	3	8	N	Bike	N
PCBs	28Uml	3	Y	₩.	Y	0
Metals	500 ml	1	₫	N	3H162	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N
<u>.</u>			Y	N	Y	N

TOTAL NO. OF CONTAINERS 6		
LABORATORY 565	DELIVERED VIA SGS COURS	DATE 6 25/20
WEATHER 85-90 Sung		-
COMMENTS		

Signature: Admin/Forms/Environmental/water sample collection report Date: 6/25/20

Admin/Forms/Environmental/water sample collection report

WATER SAMPLE COLLECTION REPORT

PROJECT NAME NSA	Mechanicsburg		SAMPLE I.D. <	- 21.62	2/25	
PROJECT No. 1041			WELL NO. 5-21452			
SAMPLE DATE 6/15/20			SAMPLED BY	アプレス	<u> </u>	
SAMPLE TIME 18:10	· ·		SAMPLE SEQUE	ENCE NUMBI	ER	
COLLECTION EQUIPMENT	Bladder pum					
DEPTH TO WATER PRIOR	<u>:</u>	V6.86		<u> </u>	 	
		3/10·1/0				
	FIEL	D MEASUREMI	ENTS			
рН		Standard Units		7.01		
Specific Conductar	nce	mS/cm		2. (3	6	
Water Temperatu	re	°C		16.7	4	-
Dissolved Oxyge	n	ppm	554	1.6:).	
Redox Potential		mV		134.	3	
Turbidity		NTU		4.7		
SAMPLING FLOW RATE	SAMP	mL/m				
PARAMETER	VOLUME	No. Containers		FILTERED	PRE:	SERVED
VOCs	& 40ml	3	Y	(v)	(1)	N
PCBs	St 300ml	Ž	Y	(N)	Y	(N)
Metals	500 m	Ĭ	Y	N	(Ý)	N
		-	Y	N	Y	N
	-		Y	N	Y	N
			Y	N	Y	N
		"	Y	N	Y	N
						· · · · · · · · · · · · · · · · · · ·
TOTAL No. of CONTAINER	as 6					
LABORATORY 565		DELIVER	ED VIA GOO	-X-	DATE	0/26/20
WEATHER SUNM	LON 80'S					·
COMMENTS (
Signature: M	<u>k</u>	_			Date:	15/20

Signature: J. Kysusm

Admin/Forms/Environmental/water sample collection report

WATER SAMPLE COLLECTION REPORT

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. 503 M54 062420
PROJECT No. 1041	WELL NO. 303 M54
SAMPLE DATE 6/24/2020	SAMPLED BY J. Fireson
SAMPLE TIME 14:35	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT)	

FIELD MEASUREMENTS			
рН	Standard Units	7.73	
Specific Conductance	mS/cm	0.694	
Water Temperature	°C	23.25	
Dissolved Oxygen	ppm	0.45	
Redox Potential	mV	-125.2	
Turbidity	NTU	5.42	

WATER APPEARANCE OR O	DORS	0/2					
SAMPLING FLOW RATE		၂ က	mL/min				
TOTAL Sulfide	40 w1	2		200	H	Y NHOIH	ZMAL
	SAM	PLE TYPE IN	FORMATIC	N		•	
PARAMETER	VOLUME	No. Con	TAINERS	FIELD F	ILTERED	Preserv	ED
VOCs	40 ml	3		Y	Ń	1 HCC	N
PCBs	250 MI	2		Y	N ²	Y	Ŋ
Metals corm	500 ml	1		Y	N	V 14H03	N
Ack	250 ml	1	~	Y	(N)	\$ 7.4E	N
NHz	250 mi	/	20.373	Y	(N)	M Hy 504	N
Ce/504	500 ml	1	55-10	Y	N	Y	Ŋ
D155 /4	50001	1		Ŷ	N	BHMO3	N
NO3/MO2	250 ml	7	75 720		(W)	(1) 1/3 50y	
TOTAL NO. OF CONTAINERS	14						
LABORATORY 565/ MI	CROBIAL JUSIS	LES DI	ELIVERED V	IA 365	1 FEDE	DATE 6-2	4-20
WEATHER 95-90°		•		· ·			
COMMENTS							

Date: 6/24/2e

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. 503M57-062320
PROJECT No. 1041	WELL NO. 503M57
SAMPLE DATE 23, 2030	SAMPLED BY J. Fenguson
SAMPLE TIME 17:45	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT)	4.26

FIELD MEASUREMENTS			
pH	Standard Units	7.09	
Specific Conductance	mS/cm	0.388	
Water Temperature	°C	19.80	
Dissolved Oxygen	ppm	0.98	
Redox Potential	mV	-848	
Turbidity	NTU	3.05	

WATER APPEARANCE OR ODORS	Clan	
SAMPLING FLOW RATE	200 mL/min	

	SAMPLE TYPE INFORMATION					
PARAMETER	Volume	No. Containers	FIELD I	ILTERED	Preserv	ÆD.
VOCs	40ml	3	Y	N	16 Hu	N
PCBs	250ml	Э	Y	03	Y	N
Metals	500ml	l	Y	(A)	WITHOR	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N

TOTAL NO. OF CO	ONTAINERS	la		
LABORATORY	365		DELIVERED VIA 545 Couries	DATE 6/34/36
WEATHER 9	5-900	Sun		
COMMENTS	•	0		

Signature:

Admin/Forms/Environmental/water sample collection report

Admin/Forms/Environmental/water sample collection report

WATER SAMPLE COLLECTION REPORT

D			15			<u> </u>
PROJECT NAME NSA Mechanicsburg			SAMPLE I.D. 5.311625-062920			120
, , 10-71			WELL No. 503M625			
SAMPLE DATE	9/20		PLED BY	MRS		
SAMPLE TIME	:30	SAM	PLE SEQUE	NCE NUMBE	ER	
COLLECTION EQUIPMEN	NT Bladder pur	mp *				•
DEPTH TO WATER PRIO	R TO SAMPLING (FT)	33.29				_
	9)					
	FIE	LD MEASUREMEN	TS			
pH		Standard Units		7.0	7	
Specific Conduc	tance	mS/cm		0.46	6	
Water Tempera	iture	°C		16.0	1 4	
Dissolved Oxy	gen	ppm	-	7 3	5	
Redox Potent	ial	mV	<u> </u>	<u> </u>	9	
Turbidity		NTU		10.	Ö	
SAMPLING FLOW RATE	Sam	DO ODOS mL/min ml/min				
Parameter	VOLUME	No. Containers		FILTERED		ERVED
VOCs	Home	3	Y	(1)	(V)	И
PCBs	BoomL	à	Y		Y	M
Metals	500 ml	4.)	Y	(N)	V	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N
				.1		Ţ
TOTAL NO. OF CONTAIN	VERS (
LABORATORY <	3	DELIVERED '	VIA COLA	GC .	DATE	1/8/20
WEATHER SUNG	H-44.405	I				July -
COMMENTS	175					2
Signature:	\$6				Date:	29/20

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. 503M6301~062620
PROJECT No. 1041	WELL NO. 503MC301
SAMPLE DATE 6/26/20	SAMPLED BY MCS
SAMPLE TIME 11:10	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT) 34.5\	

FIELD MEASUREMENTS				
pН	Standard Units	12.07		
Specific Conductance	mS/cm	4.517		
Water Temperature	°C	17 17		
Dissolved Oxygen	ppm	1.69		
Redox Potential	mV	74.4		
Turbidity	NTU	7.00		

WATER APPEARANCE OR ODORS

SAMPLING FLOW RATE

Clear, 1:343 Sheet, 100 Odor

mL/min

	Sam	PLE TYPE INFORMATI	ON			-
PARAMETER	Volume	No. Containers	FIELD I	ILTERED	Pres	ERVED
VOCs	40 ml	3	Y	(1)	(9)	N
PCBs	300 mL	2	Y	(V)	Ÿ	N)
Metals	500 ML	1	Y	N	(Y)	N
			Y	N	Ÿ	N
			Y	N	Y	N
,,,		, II	Ÿ	N	Y	N
			Y	N	Y	N

TOTAL NO. OF CONTAINERS		
LABORATORY 565	DELIVERED VIA	DATE ()()()
WEATHER SLYING HIGH 703		
COMMENTS		
Signature: M		Date: 436/20

Dissolved Oxygen

Redox Potential

Turbidity

WATER SAMPLE COLLECTION REPORT

PROJECT NAME NSA Mechanic	sburg	SAMPLE I.D. 53N (302-062620		
PROJECT No. 1041		WELL NO. 503W302		
SAMPLE DATE 62626	· -	SAMPLED BY MS		
SAMPLE TIME 9:05		SAMPLE SEQUENCE NUMBER		
	dder pump			
DEPTH TO WATER PRIOR TO SAMPLIN	NG (FT) 38.2X			
•				
-	FIELD MEASURE	MENTS		
pН	Standard Unit	s N.68		
Specific Conductance	mS/cm	2.49		
Water Temperature	°C	17 45		

WATER APPEARANCE OR ODORS	Clear	No odors	
SAMPLING FLOW RATE	150	mL/min	

ppm

mV

NTU

	SAMPLE TYPE INFORMATION					
PARAMETER	Volume	No. Containers	FIELD	FILTERED	PRES	SERVED
VOCs	Home	3	Y	(4)	(Y)	N
PCBs	3001	2	Y	(A)	Y	Ø
Metals	Sooml	1	Y	N)	Y	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N

TOTAL NO. OF CONTAINERS		
LABORATORY 565	DELIVERED VIA GOLX	DATE 16 16
WEATHER Sunny, Lind 65		
COMMENTS		
Signature: M S		Data (1) (1/2)

PROJECT NAME NSA Mechanicsburg		SAMPLE I.D. 5031163 13-062520
PROJECT No. 1041	·	WELL No. 503M6302
SAMPLE DATE Jun 25,2020	· · · · · · · · · · · · · · · · · · ·	SAMPLED BY J. Fergusen
SAMPLE TIME 10:37		SAMPLE SEQUENCE NUMBER
Collection Equipment Bladder pump		
DEPTH TO WATER PRIOR TO SAMPLING (FT)	33.48	

FIELD MEASUREMENTS				
рН	Standard Units	11.53		
Specific Conductance	mS/cm	1.412		
Water Temperature	°C	12,00		
Dissolved Oxygen	ppm	3.99		
Redox Potential	mV	39.2		
Turbidity	NTU	29.9		

WATER APPEARANCE OR ODORS	sughtly closly	
SAMPLING FLOW RATE	200 mL/min	

ž.	SAMPLE TYPE INFORMATION					
PARAMETER	Volume	No. Containers	FIELD I	FILTERED	PRESERV	/ED
VOCs	40ml	3	Y	N	1 HU	N
PCBs	250ml	2	Y	00	Y	N
Metals	500ml	/	Y	N	1/NO2	N
-			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N

TOTAL NO. OF CONTAINERS		
LABORATORY 565	DELIVERED VIA COUCLEC	DATE 6-25-20
WEATHER 786-90° Sun		
COMMENTS		

Signature:

Admin/Forms/Environmental/water sample collection report

Date: 6-25-20

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. 303M64D1-062420
PROJECT No. 1041	WELL No. 503M64D/
SAMPLE DATE Jun 24, 2020	SAMPLED BY J. Kinguga
SAMPLE TIME 17:10	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT)	5 .2)

FIELD MEASUREMENTS			
рН	Standard Units	12.15	
Specific Conductance	mS/cm	5 124	
Water Temperature	°C	19.84	
Dissolved Oxygen	ppm	1.90	
Redox Potential	mV	-37.8	
Turbidity	NTU	7.61	

WATER APPEARANCE OR ODORS	C/ar	
SAMPLING FLOW RATE	216 mL/min	

	SAMI	PLE TYPE INFORMATION	ON			
Parameter	ETER VOLUME NO. CONTAINERS			TLTERED	Preserved	
VOCs	40ml	3	(Y)	N	VIKL	N
PCBs	250ml	Э	Y	W.	Y	Ø,
Metals	500 ml	/	E	N	1/110g	N
CEUCISON PARON	multiple	ladames	80	N	0/1403	N
MNA	3-40m1	3	Y	(1)	Y	M
Backer 4	12	/	Y	(D)	Y	29
			Y	N	Y	N

TOTAL NO. OF CONTAINERS SEE Abus	
LABORATORY 365/ Microbial Insights	DELIVERED VIA 365 / MICrobial DATE 6/35/302
WEATHER 850900 Smm	kdbp
COMMENTS DO MS MSD Collected	
Signature:	Date: 6/24/30

Admin/Forms/Environmental/water sample collection report

WATER SAMPLE COLLECTION REPORT

PROJECT NAME NSA Mechanicsburg			SA	SAMPLE I.D. 521/402-062620			
PROJECT No. 1041			W	WELL NO. 53MC402			
SAMPLE DATE 6/16	120	·	SA	MPLED BY	MR		
SAMPLE TIME 12:5	2		SA	MPLE SEQUE	ENCE NUMBE	ER	
COLLECTION EQUIPMENT	Bladd	er pump					
DEPTH TO WATER PRIOR	TO SAMPLING	(FT) 43	3.12		 -		
							
		FIELD	MEASUREME	NTS			
pН			Standard Units		11.50	,	
Specific Conducta	nce		mS/cm		2.01	6	
Water Temperatu	ire		°C		18.51	<u> </u>	
Dissolved Oxyge	en		ppm		0,6	5	
Redox Potentia	1		mV		£ 3.0	<u> </u>	
Turbidity			NTU		9,5	1	
SAMPLING FLOW RATE		200	mL/mi				
PARAMETER	Vorm				FILTERED	Dana	
* *	Volum		No. Containers	Y		PRES	ERVED N
VOCs	Haml 3		3	1 1	Q	N.	IN I
				V	OI	v	<u> </u>
PCBs	300ml		Ĵ	Y	N	Y	(8)
PCBs Metals			5	Y	Ø	Ÿ	N
	Booml		j j	Y	N N	Y	N N
	Booml		<u>)</u>	Y Y Y	N N	Y	N N N
	Booml		<u>)</u>	Y Y Y Y	N N N	Y	N N N
	Booml		<u>)</u>	Y Y Y	N N	Y	N N N
Metals	Soo HZ		2	Y Y Y Y	N N N	Y	N N N
Metals Total No. of Contains	Soo HZ			Y Y Y Y	N N N N	Y Y Y	N N N
TOTAL NO. OF CONTAINE LABORATORY WEATHER	300 ml 500 ml			Y Y Y Y	N N N N	Y	N N N
Metals Total No. of Contains	Soo HZ			Y Y Y Y	N N N N	Y Y Y	N N N

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. 503M65 - 06 29 30
PROJECT NO. 1041	WELL NO. 303M65
SAMPLE DATE 6/29/3030	SAMPLED BY J. hoguson
SAMPLE TIME /3:30	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT)	-

· ·	FIELD MEASUREMENTS			
pН	Standard Units	9.46		
Specific Conductance	mS/cm	0.306		
Water Temperature	°C	17.80		
Dissolved Oxygen	ppm	1.29		
Redox Potential	mV	-145.8		
Turbidity	NTU	7.28		

WATER APPEARANCE OR ODORS	Cheur.	
SAMPLING FLOW RATE	∂∂6 mL/min	

	SAMPLE TYPE INFORMATION							
Parameter	PARAMETER VOLUME NO. CONTAINERS FIELD FILTERED PRESERVE							
VOCs	40 1	3	Y	(N)	1 IKL	N		
PCBs	40 ml 350 ml 500 ml	9	Y	N	Y	B		
Metals	500 ml	1	Y	₩.	W 14HO3	N		
			Y	N	Y	N		
			Y	N	Y	N		
			Y	N	Y	N		
-			Y	N	Y	N		

TOTAL NO. OF	CONTAINERS	6		
Laboratory	365		DELIVERED VIA 365 Courses	DATE (30/20
WEATHER	85°-90°	Sum		7
COMMENTS		•		

Signature:

Admin/Forms/Environmental/water sample collection report

Date: 4/29/2000

Redox Potential

Turbidity

Admin/Forms/Environmental/water sample collection report

WATER SAMPLE COLLECTION REPORT

PROJECT NAME NSA Mechanic	esburg	SAMPLE I.D. 5346601-063620	
PROJECT No. 1041		WELL NO. SO3MCCO)	
SAMPLE DATE (30 20		SAMPLED BY MRS	
SAMPLE TIME 11:15		SAMPLE SEQUENCE NUMBER	
COLLECTION EQUIPMENT Bla	dder pump		
DEPTH TO WATER PRIOR TO SAMPLIN	NG (FT) 25.56		
	FIELD MEASURE	MENTS	
pН	Standard Units }). 10		
Specific Conductance	mS/cm	1.378	
Water Temperature	°C	18.15	
Dissolved Oxygen	ppm	177	

WATER APPEARANCE OR ODORS	Clear, N	८ व्यक्त	
SAMPLING FLOW RATE	150	mL/min	

mV

NTU

SAMPLE TYPE INFORMATION						
PARAMETER	Volume	No. Containers	FIELD I	FILTERED	Pres	ERVED
VOCs	Home	3	Y	(N)	Ø	N
PCBs	BoomL	Q	Y	N	Y	⁴
Metals	SOULL)	Y	(N)	(Y)	Ī
			Y	N	Y	1
			Y	N	Y	1
			Y	N	Y	_ 1
		· · · · · · · · · · · · · · · · · · ·	Y	N	Y	_ <u> </u>

TOTAL NO. OF CONTAINERS		
LABORATORY SGS	DELIVERED VIA CONTICO	DATE ON DO
WEATHER Surby, High 705		1 /
COMMENTS		
Signature: MS		Date: 6/30/20

Water Temperature

Dissolved Oxygen

Redox Potential

Turbidity

WATER SAMPLE COLLECTION REPORT

PROJECT NAME NSA Mechanic	sburg	SAMPLE I.D. 5-346020
PROJECT No. 1041		WELL NO. SAMGEND
SAMPLE DATE 630/30		SAMPLED BY MC
SAMPLE TIME 13:05		SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Blace	dder pump	
DEPTH TO WATER PRIOR TO SAMPLIN	1G (FT) 27. 521	
	FIELD MEASUREN	MENTS
pН	Standard Units	11.50
Specific Conductance	mS/cm	1.512

°C

ppm

mV

NTU

WATER APPEARANCE OR ODORS	Clear, No	25000	
SAMPLING FLOW RATE	150	mL/min	

SAMPLE TYPE INFORMATION						
Parameter	VOLUME	No. Containers	FIELD	FILTERED	PRE	SERVED
VOCs	LbmL	3	Y	(N)	V	N
PCBs	300mL	2	Y	N	Y	(N)
Metals	goo ml	1	Y	N	(Y)	M
			Y	N	Ý	N
			Y	N	Y	N
		· ·	Y	N	Y	N
			Y	N	Y	N

TOTAL NO. OF CONTAINERS		
LABORATORY 565	DELIVERED VIA	DATE 3026
WEATHER SUNTY LOUIS, 803		7-1-
COMMENTS		
Signature: M		Date: 430/26

Signature:_

Admin/Forms/Environmental/water sample collection report

WATER SAMPLE COLLECTION REPORT

PROJECT NAME NS	A Mechanicsburg	SAN	MPLE I.D.	211 1-10	<u> </u>	100
PROJECT No. 1041		WE	WELL NO. 503H (70) - 070120			
1041			SAMPLED BY MARK			
(11)	20		MPLE SEQUE	NCE NUMBE		
COLLECTION EQUIPMENT	Bladder pu					
DEPTH TO WATER PRIOR		28.99				
<u></u>		90.77				
	FIF	ELD MEASUREMEN	TS			
pН		Standard Units		7.0	4	
Specific Conduct	ance	mS/cm		0, 2)8	<u>, </u>	
Water Temperat	ure	°C		17.3	3	
Dissolved Oxyg	en	ppm		1.20		
Redox Potentia	al	mV		97.6	,	
Turbidity		NTU		4.8		
SAMDING PLOUD DATE) mL/min				
SAMPLING FLOW RATE	SAN	PLE TYPE INFORMAT				
PARAMETER	SAN	APLE TYPE INFORMAT No. Containers	ION	Filtered	PRE	SERVED
	VOLUME		ION	FILTERED (N)	حدا	SERVED N
Parameter	Volume 40 mL		ION FIELD		PRE	
PARAMETER VOCs	VOLUME 40 mL 300 mL		ION FIELD Y	(N)	Ø	N
PARAMETER VOCS PCBs	Volume 40 mL		FIELD Y Y	(N)	Ý Y	N N
PARAMETER VOCS PCBs	VOLUME 40 mL 300 mL		ION FIELD I Y Y Y	(A)	Ý Y	N N N
PARAMETER VOCS PCBs	VOLUME 40 mL 300 mL		ION FIELD Y Y Y Y Y	N N	Ý Y Ý	N N N
PARAMETER VOCS PCBs	VOLUME 40 mL 300 mL		ION FIELD Y Y Y Y Y Y	N N N	Ý Y Y	N N N
PARAMETER VOCS PCBs Metals	VOLUME 40 mL 300 mL 500 mL		ION FIELD 1 Y Y Y Y Y Y Y	N N N N	Y Y Y Y	N N N N
PARAMETER VOCS PCBs Metals Total No. of Contains	VOLUME 40 mL 300 mL 500 mL	No. Containers 3 1	FIELD Y Y Y Y Y Y Y Y Y	N N N	Y Y Y Y Y	N N N N N
PARAMETER VOCS PCBS Metals Total No. of Contains Laboratory 56	VOLUME 40 mL 300 mL 500 mL	No. Containers 3 1	FIELD Y Y Y Y Y Y Y Y Y	N N N	Y Y Y Y	N N N N N
PARAMETER VOCS PCBS Metals Total No. of Contains Laboratory 56	VOLUME 40 mL 300 mL 500 mL		FIELD Y Y Y Y Y Y Y Y Y	N N N	Y Y Y Y Y	N N N N N

Date: 7/1/20

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. SBM6702 -070120
PROJECT No. 1041	WELL NO. 503H67D2
SAMPLE DATE 7/1/20	SAMPLED BY MRS
SAMPLE TIME 12:45	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT) 32.33	
-	· · · · · · · · · · · · · · · · · · ·

FIELD MEASUREMENTS			
pН	Standard Units	6.93	
Specific Conductance	mS/cm	0,484	
Water Temperature	°C	16.44	
Dissolved Oxygen	ppm	0.86	
Redox Potential	mV	2.7	
Turbidity	NTU	2 10	

WATER APPEARANCE OR ODORS	Ocar, No	2005	
SAMPLING FLOW RATE	175	mL/min	

SAMPLE TYPE INFORMATION						
PARAMETER	VOLUME	No. Containers	FIELD I	FILTERED	PRESI	ERVED
VOCs	LowL	3	Y	(N)	(Y)	N
PCBs	300 mlz	2	Y	(N)	Y	(N)
Metals	Soomh		Y	(N)	(Y)	N
			Y	N	Y	N
	30.4		Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N

TOTAL NO. OF CONTAINERS		
LABORATORY SCS	DELIVERED VIA	DATE 7/1/20
WEATHER SLINKY MID FO'S		17
COMMENTS		
Signature: MY)		Date: 7/1/20

PROJECT NO. 1041 SAMPLE DATE /30/2 SAMPLE TIME /5:L COLLECTION EQUIPMENT DEPTH TO WATER PRIOR TO	15		WELL NO. SAMPLED BY	2NC80	11-0630 1	
SAMPLE TIME S:L	15		SAMPLED BY	14 UZ	4	
COLLECTION EQUIPMENT	15			NIII.		
COLLECTION EQUIPMENT			SAMPLE SEQU	ENCE NUMBE	SR SR	
DEPTH TO WATER PRIOR TO	Bladder pu	ımp				
	SAMPLING (FT)	27.61	,			
	FI	ELD MEASURE	MENTS		· · · · · ·	
pH		Standard Unit		(0)	1	
Specific Conductanc	e	mS/cm	-	6.9	<u>ا</u>	 -
Water Temperature		°C		0.6)	
Dissolved Oxygen		ppm		16.6	_	
Redox Potential	-	mV		1.40)	
Turbidity		NTU		60.4	<i>*</i>	
SAMPLING FLOW RATE			/min			
		MPLE TYPE INFOR				
Parameter	VOLUME	No. Contain		FILTERED		SERVED
VOCs	40ml	3	Y	<u> </u>	(Y)	N
PCBs	300 ml	Q.	Y	N N	Y	<u> </u>
Metals	500 M	1	Y	W	(Y)	Ň
			Y	N	Y	N
0.000			Y	N	Y	N
			Y	N	Y	N
	- VV SA TVV		Y	N	Y	N
TOTAL No. OF CONTAINERS						

Admin/Forms/Environmental/water sample collection report

WEATHER COMMENTS

Signature:

surmy, Mid 805

PROJECT NAME NS	A Mechanicsburg	SAMPLE I.D. 503 M6802-063020
PROJECT No. 10	41	WELL NO. 503M6802
SAMPLE DATE (/3	6/20	SAMPLED BY MR
SAMPLE TIME	•	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT	Bladder pump	
DEPTH TO WATER PRIOR	TO SAMPLING (FT) 34.03	

FIELD MEASUREMENTS				
рΉ	Standard Units	6.95		
Specific Conductance	mS/cm	0.694		
Water Temperature	°C	15.69		
Dissolved Oxygen	ppm	80.1		
Redox Potential	mV	-450		
Turbidity	NTU	4.02.		

WATER APPEARANCE OR ODORS	Clear,	No odos	
SAMPLING FLOW RATE	150	mL/min	

	SAM	IPLE TYPE INFORMATION	ON			·
Parameter	VOLUME	No. Containers	FIELD FILTERED		Preserved	
VOCs	40 ml	3	Y	Q	Ø	N
PCBs	300 mL	2	Y	Ø	Y	(N)
Metals	300 ml	ł	Y	0	(Y)	N
			Y	N	Ϋ́	N
			Y	N	Y	N
			Y	N	Y	N
		1	Y	N	Y	N

TOTAL NO. OF CONTAINERS		10
LABORATORY 565	DELIVERED VIA COUSE	DATE 7/1/20
WEATHER SCHOOL HIGH 805		711
COMMENTS		
Signature: MM SA		Date: 6/8/20

~
SAMPLE I.D. SOSMIADI TOT TO
WELL NO. SOSM 69 DI
SAMPLED BY J. Ferguson
SAMPLE SEQUENCE NUMBER

FIELD MEASUREMENTS				
pH	Standard Units	7.23		
Specific Conductance	mS/cm	0.546		
Water Temperature	°C	19.03		
Dissolved Oxygen	ppm	3.80		
Redox Potential	mV	-46.1		
Turbidity	NTU	2.80		

WATER APPEARANCE OR ODORS	Clean	-
SAMPLING FLOW RATE	/95 mL/min	

SAMPLE TYPE INFORMATION						
PARAMETER	VOLUME	No. Containers	FIELD FILTERED		Preserved	
VOCs	40ml	3	Y	Ø	W HCI	N
PCBs	250 ml	3	Y	N	Y	40
Metals	500 ml	1	Y	(A)	CHN03	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N

TOTAL NO. OF C	CONTAINERS	6		
LABORATORY	565		DELIVERED VIA 565 Carrier	DATE 6 30 202
WEATHER	85-900	Sunny		
COMMENTS				

Signature:	<u> 7</u> -	KA T	\
Admin/Forms/Environr	nental/water sam	ple collection	neport

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. 503M69D2 - 06302020
PROJECT No. 1041	WELL NO. SIMMADA
SAMPLE DATE June 30, 2020	SAMPLED BY J. Reguson
SAMPLE TIME 17:05	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT) 39.27	

	FIELD MEASUREMENTS	
рН	Standard Units	7.27
Specific Conductance	mS/cm	0.584
Water Temperature	°C	15.36
Dissolved Oxygen	ppm	1.67
Redox Potential	mV	-27.2
Turbidity	NTU	2.61

WATER APPEARANCE OR ODORS		85	
SAMPLING FLOW RATE	216	mL/min	

-	SAMPLE TYPE INFORMATION					
Parameter	Volume	No. Containers	FIELD F	ILTERED	Preserv	ŒD
VOCs	40 ml	3	Y	N	1 HCL	N
PCBs	250 ml	Э	Y	N	Y	₩.
Metals	500 ml	1	Y	QAT,	WHN03	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N

TOTAL NO. OF CONTAINERS		
LABORATORY 5G5	DELIVERED VIA 565 Courter	DATE 6 30/2026
WEATHER 65-90° Juny		x-15-5
COMMENTS	544	

1. 1. 1

Signature:

Admin/Forms/Environmental/water sample collection report

MILEA IV		
PROJECT NAME NSA Mechanic	csburg	SAMPLE I.D. SRM70-062920
PROJECT No. 1041		WELL NO. SOSMIO
SAMPLE DATE 6/29/20		SAMPLED BY MRS
SAMPLE TIME		SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bla	dder pump	
DEPTH TO WATER PRIOR TO SAMPLE	NG (FT) 37.15	
	FIELD MEASURE	MENTS
pН	Standard Units	6.70
Specific Conductance	mS/cm	0.741
Water Temperature	°C	18.19
Dissolved Oxygen	ppm	0.4)
Redox Potential	mV	-70.5
Turbidity	NTU	6.03
	<u> </u>	

WATER APPEARANCE OR ODORS	Ceas	Ne odoc	
SAMPLING FLOW RATE	150	mL/min	

SAMPLE TYPE INFORMATION						
PARAMETER	VOLUME	No. Containers	FIELD	FILTERED	PRESE	ERVED
VOCs	Homl	3	Y	(N)	(Ŷ)	N
PCBs	Booml	2	Y	(N)	Ý	(N
Metals	Soonl	ì	Y	(N)	Y	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N
		 	Y	N	Y	N

TOTAL NO. OF CONTAINERS		
LABORATORY SAS	DELIVERED VIA	DATE 2720
WEATHER SUNDY, High 805		7701
COMMENTS		,
Signature: M		Date: (129/20)

Admin/Forms/Environmental/water sample collection report

WATER SAMPLE COLLECTION REPORT

PROJECT NAME NS	NA Machanian		SAMPLE I.D		1000		
- 11	SA Mechanicsbur	rg	WELL NO. SER 10-71				
	Sugar Duma / Ala			SAMPLED BY LACK			
614	SAME TO E						
	4:50		SAMPLE SE	QUENCE NUMB	ER —————		
COLLECTION EQUIPMEN		<u> </u>					
DEPTH TO WATER PRIOR	R TO SAMPLING (F	1) 41.23					
	13					<u></u>	
		FIELD MEASURE					
pН		Standard Un	ts	8.59	<u>ት</u>		
Specific Conduct		mS/cm		0.23	<u> </u>		
Water Tempera		°C		21.0	7		
Dissolved Oxy		ppm		1.32			
Redox Potenti	al	mV		-37.	2		
Turbidity		NTU		6.70	2		
		SAMPLE TYPE INFO	RMATION	<u></u>	· · ·		
Parameter	Volume	No. CONTAI	VERS FI	LD FILTERED	PRES	SERVED	
VOCs	Youl	3	Y	(N)	(Y)	N	
	N 1 19 1						
PCBs	300 ml	1 5	Y	N)	Y	(N)	
PCBs Metals	300ml	3	Y		(Y)	N N	
	300ml Sooml	j		N N	Ý Ý Y		
	300 ml	1	Y	N		N	
	300 ml	3	Y	N N	Y	N N	
	300 ml	3	Y Y Y	N N N	Y	N N N	
Metals	300 ml	3	Y Y Y	N N N	Y Y Y	N N N	
Metals Total No. of Contain	300 ML SOOML	j j	Y Y Y Y	N N N N	Y Y Y	N N N	
Metals Total No. of Contain Laboratory	5	Delr	Y Y Y Y	N N N N	Y Y Y	N N N	
Metals Total No. of Contain Laboratory Weather	5	DELF	Y Y Y	N N N N	Y Y Y Y	N N N N	
Metals Total No. of Contain Laboratory	5	DELF	Y Y Y Y	N N N N	Y Y Y Y	N N N N	

Admin/Forms/Environmental/water sample collection report

WATER SAMPLE COLLECTION REPORT

PROJECT NAME NSA Mechanicsburg			PLE I.D.	BM72-	n6292	S
PROJECT No. 104	1	WEL	WELL No. 53112			
SAMPLE DATE 6/29/20			SAMPLED BY MCS			
SAMPLE TIME 12:55			PLE SEQUE	NCE NUMBE	ER	
COLLECTION EQUIPMENT	Bladder pun	np				
DEPTH TO WATER PRIOR	TO SAMPLING (FT)	3.23	<u>. </u>			
	FIE	LD MEASUREMEN	rs		·	<u>-</u>
pН		Standard Units		് വ)	
Specific Conductar	nce	mS/cm		3.067		
Water Temperatur	re	°C		22.09		
Dissolved Oxyge	n	ppm		7.89		
Redox Potential		mV		~Lb.c)	
Turbidity		NTU		0.35		
SAMPLING FLOW RATE		ML/min PLE TYPE INFORMATI	ON			
PARAMETER	VOLUME	No. Containers	FIELD I	TILTERED	PRES	ERVED
VOCs	Homb	3	Y	(N)	(Ý)	Ŋ
PCBs	Booml	2	Y	(4)	Ÿ	N
Metals	500 ml		Y	(A)	W	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N
TOTAL NO. OF CONTAINER	es /					
LABORATORY <</td <td></td> <td>Delivered \</td> <td>VIA Co.</td> <td></td> <td>DATE/</td> <td>Palm</td>		Delivered \	VIA Co.		DATE/	Palm
Weather C	LOW 805		_ Val	141		10010
	- 1 / DN / A / L \					
COMMENTS JUNION	, 50.0					

PROJECT NAME NSA Mechanicsbu	urg	SAMPLE I.D. 503M 73D1 ~ 063436
PROJECT NO. 1041		WELL NO. SU3M73DI
SAMPLE DATE June 2020	2	SAMPLED BY J. Figure
SAMPLE TIME 12:60		SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladde	er pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT) 31.91	

FIELD MEASUREMENTS			
pН	Standard Units	7.10	
Specific Conductance	mS/cm	0.491	
Water Temperature	°C	17.94	
Dissolved Oxygen	ppm	2.27	
Redox Potential	mV	-65.0	
Turbidity	NTU	2.57	

WATER APPEARANCE OR ODORS	- Um	
SAMPLING FLOW RATE	216 mL/min	

SAMPLE TYPE INFORMATION						
PARAMETER	VOLUME	No. CONTAINERS	FIELD FILTERED		PRESERVED	
VOCs	40ml	3	Y	N	E Ha	1
PCBs	250ml	2	Ÿ	(DD)	Y	1
Metals	250ml	1	Y	(A)	(P) HNU3	1
,			Y	N	Y	1
			Y	N	Y	1
			Y	N	Y	1
			Y	N	Y	1

TOTAL NO. OF CONTAINERS		
LABORATORY 565	DELIVERED VIA SGS Corre	DATE 6 39/2000
WEATHER 85-90° 500		•
COMMENTS		

Signature:

Admin/Forms/Environmental/water sample collection report

Date: 6/29/2020

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. 503M7707-067620
PROJECT No. 1041	WELL NO. 503M 72D2
SAMPLE DATE Ju 24, 2020	SAMPLED BY J. Figura
SAMPLE TIME (6.35	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT)	3.98

FIELD MEASUREMENTS			
pH	Standard Units	7.50	
Specific Conductance	mS/cm	0.373	
Water Temperature	°C	19.29	
Dissolved Oxygen	ppm	11.64	
Redox Potential	mV	-24.3	
Turbidity	NTU	10.3	

WATER APPEARANCE OR ODORS	Ulan		
SAMPLING FLOW RATE	220	mL/min	

SAMPLE TYPE INFORMATION						
PARAMETER	Volume	No. Containers	FIELD]	FILTERED	PRESERV	ÆD.
VOCs	40ml	3	Y	B	@ IKL	
PCBs	25021	Э	Y	M	Y	(
Metals	350 ml	1	Y	W.	1 HNO3	
			Y	N	Y	
			Y	N	Y	
			Y	N	Y	
			Y	N	Y	1

TOTAL NO. OF CONTAINERS	
LABORATORY 565	DELIVERED VIA SGS Courses DATE 6/26/2000
WEATHER 80-960 3mg	
COMMENTS	

Signature:

Admin/Forms/Environmental/water sample collection report

Date: 6/24/2020

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. 001~070120
PROJECT NO. 1041	WELL NO. OC-1
SAMPLE DATE 7/1/20	SAMPLED BY JRF/MRS
SAMPLE TIME 9:25	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT) 25.84	

	FIELD MEASUREMENTS			
pH	Standard Units	6.99		
Specific Conductance	mS/cm	0.257		
Water Temperature	°C	1439		
Dissolved Oxygen	ppm	3.37		
Redox Potential	mV	142.0		
Turbidity	NTU	6.68		

WATER APPEARANCE OR ODORS	Gear	No about	
SAMPLING FLOW RATE	<u> </u>	mL/min	

SAMPLE TYPE INFORMATION						
PARAMETER	VOLUME No. CONTAINERS		FIELD FILTERED		PRESERVED	
VOCs	40ml	3	Y	(7)	(Ŷ)	N
PCBs	300 mL	2	Y	Ø	Ť	(1)
Metals	500 ml	ĵ	Y	(N)	(Y)	Ň
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N
			Y	N	Y	N

TOTAL NO. OF CONTAINERS		
LABORATORY 565	DELIVERED VIA COURSE	DATE 7/1/20
WEATHER SUNNY, LUN 705		
COMMENTS		
Signature: M Sh		Date: 1//20

PROJECT NAME NSA Mechanicsburg	SAMPLE I.D. DD - 70 - 070/20
PROJECT NO. 1041	WELL NO. 20-70
SAMPLE DATE July 1, 2020	SAMPLED BY J. hogoson
SAMPLE TIME /2:40	SAMPLE SEQUENCE NUMBER
COLLECTION EQUIPMENT Bladder pump	
DEPTH TO WATER PRIOR TO SAMPLING (FT) 3.78	

FIELD MEASUREMENTS			
pН	Standard Units	7.07	
Specific Conductance	mS/cm	0.476	
Water Temperature	°C	15.20	
Dissolved Oxygen	ppm	5.30	
Redox Potential	mV	184.1	
Turbidity	NTU	S.G.	

WATER APPEARANCE OR ODORS	The state of the s	239.0	
SAMPLING FLOW RATE	700	mL/min	

SAMPLE TYPE INFORMATION						
Parameter	Volume	No. Containers	FIELD FILTERED		Preserved	
VOCs	40 ml	3	Y	N	(Y) 1101	1
PCBs	40 ml 250 ml	2	Y	O	Y	4
Metals	500 MI	/	Y	<u>an</u>)	(HHO3	1
			Y	N	Y	1
			Y	N	Y	1
	THE RESIDENCE WAS		Y	N	Y	1
			Y	N	Y	1

TOTAL NO. OF CO	ONTAINERS	6	
LABORATORY	365		DELIVERED VIA GORRES CONTES DATE 7/1/2020
WEATHER	88°-90°	BUMMY	
COMMENTS			

Signature:

Admin/Forms/Environmental/water sample collection report

Date: 7/1/2026

APPENDIX A-3 Chains of Custody

CHAIN OF CUSTODY

SGS Accutest - Dayton

2235 Route 130, Dayton, NJ 08810 TEL. 732-329-0200 FAX: 732-329-3499/3480 FED-EX Tracking #

PAGE / OF 1

March Project Information Project Information Project Information Info	·			IEL. /32-32		FAX: /:		79/348	U				SGS Acc	cutest Qu	ote #				SGS Acc	utest Job	#J[187	47	, <u> </u>
Math Sergent	Client / Reporting Information	10041		Project	No leading to	nana kana ka			4-4-1					Req	jestec	Anal	ysis (executarior to to a construction of the constr	THE RESIDENCE OF THE PARKET	and a second manager	CONTRACTOR OF THE PARTY OF THE	++	+ +	
Marts Mahrura Mahrura Marts Mahrura Mahrura Marts Mahrura Mahrur	Company Name	1 '												_						Ì				DIAL Daimles - 181-1-
Mindre	RHEN Engineers + Coms.	NSAI	MECHANICS	urg			,						6				3		9					GW - Ground Water
Mindre	Street Address	Street				iose <u>.</u> els i				19-11-11	Alle des	Abuda sa	Z	10.	7		3		0/0				İ	SW - Surface Water
Mindre	City State Zip	City		State			n (if differ	ent fro	m Rep	ort to)			1.		S	3		$ec{arphi}$						
Control Cont	Varlencia PA 16059												7,	0	₹	0	2	6	0	` _				
Proce 8 Olert Purchase Orient # Oler Pur	Project Contact E-mail				Street A	ddress							1	32	4	2	30	R	200	0.	1		3	
23	DIZA) VI CAIIA		Order#		City			Sta	te		Zip		+	•	2	ال	2	12	1	$ \mathcal{L} $		-	"	
According Proces			Oldol II		"									2.5	4		3		1/2	"	10	9	3	FB-Field Blank
Contention			ſ _D) ω	1.3	Attention	1:							9	len.	~;'	È	٩	Ĉ,		2		1 N	3	RB- Rinse Blank
303 M 57 - 20-23 20	Throwson/Milestock 412-38	-819K	Dece No	Collection	l .	_		N	lumber	of presen	ved Bottle		8	Z		1/3	'n	7	3	1	13	, '\		16-mp blank
303 M 57 - 20-23 20	sgs			Conection	I	ł		Т	П.	İТ	ĕ	쀭	U	M	0	7	1240	7	3	3	12	13	W	
303 M 57 - 20-23 20	Accutest	MEOH/DI Vial #	Date	Time		Matrix	# of bottles	NaOH	HN03	NON	DI War	ENCO	2	10	00	Ac	An	V	A	3	13	12	4	LAB USE ONLY
2 50 3 M 16 - 06 23 70	1 503 M 57 ch 22 20		4/23/2026	17145	200			-	 	$\dagger \dagger$			2	1	2				T		一			<u> </u>
3 78 662370 4/3 1/20 7/30					_			-	 	\Box			-	1										427
									+	+	\dashv			•										
So3 M17 - O(29120														-		,	1	1	7	5	5	7	3	
Solution Sample	1 309 10 10							_	- 	+ +				•		1	,	7	/,			'		
10 3 WI7 W5 06 3430	7 JUJ 11 JUJ 1 3 C								 	$\uparrow \downarrow$	 ^									0	0		-/	
Std. 10 Business Days Gas Accutest PM; Date: Commercial "A" (Level 1) NYASP Category A NYASP Category B Std. 10 Business Days Gus Rush Gus	207 000 170				1-	1					+		_)		=	~			$\overline{}$	_			-
So3 M18 - 063420 Dul 13/2020 1/3 - 120	/									+	\dashv		_	1_	_		_			_	_			
Std. 10 Business days Data Deliverable Information Comments / Special Instructions			9/21/2010						14	\perp	-		3)					_	_				
Turnaround Time (Business days) Data Deliverable Information Data Deliverable Informatio	1 2 3 . 1 6 0 0 3 1 6 0 D C 1					 		K	X	$\perp \perp$	$\perp \! \! \perp$	_		i		<u></u>	_		_	_				
Turnaround Time (Business days) Approved By (SGS Accutest PM): / Date: Commercial "A" (Level 1)								×	× L		¥)		Ţ		i	1	2	2	\mathcal{L}	3	
Approved By (SGS Accutest PM): / Date:	9 503N14-062420		6/24/20	<u> 14:10</u>	MRS	GN		X	للا				3	ı	2							igsqcup		
Approved By (SGS Accutest PM): / Date: Std. 10 Business Days Commercial "A" (Level 1) NYASP Category A	Turnaround Time (Rusiness days)		<u> </u>				Data	Deliver	able Ir	oformat	tion		2000					Comr	nents /	Specia	al Instru	ctions		
S Day RUSH FULLT1 (Level 3+4) State Forms Initial Assessments		Approved By (SGS	Accutest PM): / Date:			Commerc			abio ii			Categ	ory A		<u> </u>	\	, , ,							
3 Day RUSH NJ Reduced EDD Format Initial Assessment District Day RUSH Commercial "C" Other Label Verification Label Verification Label Verification Label Verification Commercial "A" = Results Only, Commercial "B" = Results + QC Summary Partial Raw data Sample inventory is verified upon receipt in the Laboratory Sample Custedy must be documented below each time samples change possession, iscluding courier delivery. Date fine: Da	-				_		•	-				-	ory B		X	KC	+\	(XC)	8					
Commercial "C" Other Label Verification					_			.)												Initial	l Assr	assm	en t o	B-RP
Commercial "A" = Results Only, Commercial "B" = Results + QC Summary Emergency & Rush T/A data available VIA Lablink Sample Custody must be documented below each time samples change possession, iscluding courier delivery. Sample Custody must be documented below each time samples change possession, iscluding courier delivery. Ballinguished by Sample: Date Fine:									\exists		01												* 17	
Emergency & Rush T/A data available VIA Lablink NJ Reduced = Results + QC Summary + Partial Ray data Sample inventory is verified upon receipt in the Laboratory Sample Custedy must be documented below each time samples change possession, is cluding courier delivery. Relinquished by Sampler: Date fine:							_			_									Labe	y Veri	iricati	ion_		
Sample Custory must be documented below each time samples change possession, including courier delivery. Continue Custory must be documented below each time samples change possession, including courier delivery. Custory must be documented below each time samples change possession, including courier delivery. Custory must be documented below each time samples change possession, including courier delivery. Custory must be documented below each time samples change possession, including courier delivery. Custory must be documented below each time samples change possession, including courier delivery. Custory must be documented below each time samples change possession, including courier delivery. Custory must be documented below each time samples change possession, including courier delivery. Custory must be documented below each time samples change possession, including courier delivery. Custory must be documented below each time samples change possession, including courier delivery. Custory must be documented below each time samples change possession, including courier delivery. Custory must be documented below each time samples change possession, including courier delivery. Custory must be documented below each time samples change possession, including courier delivery. Custory must be documented below each time samples change possession, including courier delivery. Custory must be documented below each time samples change possession, including courier delivery. Custory must be documented below each time samples change possession, including courier delivery. Custory must be documented below each time samples change possession, including courier delivery. Custory must be documented below each time samples change possession, including courier delivery. Custory must be documented below each time samples change possession, including courier delivery. Custory must be documented below each time samples change possession in the custory must be documented by the custory must be d	<u> </u>			n								+ QC SI	⊔mmary		Samr	ıle inv	entor	v is ve	rified	unon	receir	ot in th	ne Lat	oratory
	Emogency & rue in a data dydiable VIA Labilik	Sa	mple Custody not	st be docum	pented b	elow eac	h time sa	mples	chang	pos	sessio	n, impclo	uding c		deliver	у.				No.			77	7790774
	Relinquished by Sampler: Date lime:	a/K:oR	Received By:	L /	_			Relinqui 2	speed B	y: <u>I</u>	/ /	//				DATE OF	10	טן	Receive 2	d By:		87		
Relinquished by Sampler: Date Time: Received By:	Reli quished by Sampler: Date Time:	/ 10.ººO	Received By:	MUK	/	-		Relingu	shod	y: [<	7	$\overline{}$							Receive	d By:		-		
	Relinquished by: Date Time:		Received By:	- U				Custody	Seal #		θ^{-}				Preserv	ed where	applica	ble	· -		On Ice		Coole	r Temp. C
Not intact			15	 								ᅵᆜ	Not inta	ot							(——————————————————————————————————————	太	0,000

SGS Sample Receipt Summary

Job Number: J	D8742 Client	: RHEA ENGINEERS & CON	ISULTANTS INC Project: LABELS! RAOMA	AC-MID-ATLANTIC NAVY. MEC
Date / Time Received:	5/24/2020 6:44:00 PM	Delivery Method:	Airbill #'s:	
Cooler Temps (Raw Meas	sured) °C: Cooler 1: (2.0) ected) °C: Cooler 1: (1.7)	, ,		
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification:	Y or N ✓ 3. COC I ✓ 4. Smpl Dat Y or N IR Gun	Y or N Present: ✓ □ pes/Time OK ✓ □	Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree: Sample Integrity - Condition	Y or N V V V V Y Or N
3. Cooler media:4. No. Coolers:	Ice (Bag)	- - -	 Sample recvd within HT: All containers accounted for: Condition of sample: 	✓ □ Intact
1. Trip Blank present / coole			Sample Integrity - Instructions 1. Analysis requested is clear:	Y or N N/A ✓ □
2. Trip Blank listed on COC:3. Samples preserved prope4. VOCs headspace free:	erly: 🔽 🗌		Bottles received for unspecified tests Sufficient volume recvd for analysis: Compositing instructions clear:	
·			·	<u> </u>
3. Samples preserved prope	erly: 🔽 🗌		3. Sufficient volume recvd for analysis:4. Compositing instructions clear:5. Filtering instructions clear:	

SM089-03 Rev. Date 12/7/17

SGS Sample Receipt Summary

Job Number: JD	8742		Client:	RHEA ENG	SINEER	S & CON	NSULTANTS INC	Project: LABELS! RAOM	AC-MID-A	TLANTIC N	IAVY. MEC
Date / Time Received: 6/2	5/2020 5	:01:00 P	M	Delivery N	lethod:			Airbill #'s:			
Cooler Temps (Raw Measu Cooler Temps (Correc	•										
Custody Seals Present: Custody Seals Intact: Cooler Temperature		3.	. COC Pı mpl Date	resent: s/Time OK	<u>Y o</u> ✓	<u>r N</u>	1. Sample labels p 2. Container label 3. Sample contain	ner label / COC agree:	Y V V	or N	
 Temp criteria achieved: Cooler temp verification: Cooler media: No. Coolers: 		IR Gun ce (Bag)					1. Sample Integrit 1. Sample recvd v 2. All containers a 3. Condition of same	vithin HT: accounted for:	<u>Y</u>	or N	
Quality Control Preservation	on Y	or N	N/A				Sample Integrit	ty - Instructions	Y	or N	N/A
 Trip Blank present / cooler: Trip Blank listed on COC: Samples preserved properly VOCs headspace free: 	✓ ✓ ✓: ✓						Analysis reque Bottles receive	ested is clear: ed for unspecified tests me recvd for analysis:	✓ □ ✓	☑✓<td>✓</td>	✓
·							5. Filtering instruc				✓
Test Strip Lot #s:	oH 1-12:	2	29517		рН	12+:	208717	Other: (Specify)			
Comments											

SM089-03 Rev. Date 12/7/17

CHAIN OF CUSTODY

PAGE \perp OF $\frac{2}{}$

SGS North America Inc. - Daylon 2235 Route 130, Dayton, NJ 08810 TEL. 732-329-0200 FAX 732-329-3499

Bottle Order Control # LA -06 | 120 - 59
SGS Job # JD8742 FED-EX Tracking # SGS Quote #

				www.sgs.c	on/ens	usa			-			america and	- Constitution of the Cons	AND ADDRESS OF THE PARTY OF THE		term water					MINISTER STATE OF THE STATE OF	
Client/ Reporting Information			Project	Informatio	n .	1	C.	Kir Virtus				Rec	uestec	i Anal	ysis (see T	EST C	ODE	sheet)			Matrix Codes
Company Name	Project Name:	NSA Mecha	nicsburg			- 7												5			Ethene	
v ·						4												(XN030)		1	ŧ	DW - Drinking Wate GW - Ground Wate
Rhea Engineers & Consultants Street Address	Street			n controlleration		13348	Section of the Sectio	ar sissa in	A SCHOOL		<u> </u>	1260)			<u>.e</u>			Ž				WW - Water
441 Mars Valencia Road				Billing Info	rmation (if differe	ent from I	Report t	0)		- TMB	126			Ammonia			<u>e</u>			Ethane,	SW - Surface Wate SO - Soil
City State Zip	City		State	Company Na							4				튙		Ē.	1		5	뜶	SL- Sludge
Valencia, PA 16059						1					1,2,4	(Aroclor	6		Ā		SF	\	Ę	Carbon	ā,	SED-Sediment OI - Oil
Project Contact E-mail	Project #			Street Addre	SS	1			-		٦ <u>:</u>	₹	Γ/Γ	2			(DISS FF)	tra	Sulfide		lar l	LIQ - Other Liquid
Brad McCalla brad.mccalla@rhea.us	s 1041	1				,					၂ ပ္ဂ	BS S	×	Ē	Lachat	車) 	- Nitrate/Nitrite	豆	ij	- Methane,	AIR - Air SOL - Other Solid
Phone # Fax #	Client Purchase	Order #		City			Sta	ite		Zip	lect VOCs	- PCBs	ĬŽ.	Alkalinity	7	lfa	<u>o</u>	3B	- Total	Organic		WP - Wipe FB-Field Blank
724-443- 4 111 ,	1041-11					-					<u>5</u>	ြင့်	Metals (ASMS/Mn/Fe)	- A	3 H-11	Chloride/Sulfate	Dissovled	2/SM4500 NO2B	=	2	VRSK175DGMEE	EB-Equipment Blan
Sampler(s) Name(s) Phone #	Project Manager	r		Attention:).					Sel	126	als	B-11	8	ig	Š	8	4	- Total	5	RB- Rinse Blank TB-Trip Blank
Mile Stoor Jan 12-335-8196	Brad McCal			<u> </u>		- +					1 5	8	let:	9	Ž	ᅙ	ise	M45	22	🖫	122	15-111p Statik
1		Collec	tion	Т		'	 	lumber of	preserved		⊣ წ	22		320	200	ᅙ	١.	l SZ	200	310	Σ	
Lab Sample		_				# gf	~ E	HNO3 H2SO4	NONE DI Wate	MEOH	V8260SL	P8082PCB1260	6010	SM2320	SM4500NH	300	6010	353.	SM4500S2-F-11	SM5310	RS.	
# Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled by	Matrix	bottles	를 보고 보고	1 보	žδ	ΣÜ		├—	-	S	S	6	9	9	S	S	>	LAB USE ONLY
0 1 58-062420	16	(24/20	15:50	MRS	GW	5	2		2		X	×	X									E66
12 503120-062420	11	1	17:15	MRK	١	6	3	١	a		X	×	X									A2>
2 1/20	12		17:10	JC		18	1	\Box		\Box	X	X	X	Y	X	Υ.	X	V.	v	×	V	660
3 4 3 3 3 3	14		11:10	1			3	 	2		X	×	×	~	~	~		~	~		V	C2 T1
	 	 	 		-	6	13	1:1	-		1	1	1						-	_		1961
7 \$ 50 000 000 -062420 \$	12/	 	 		1	-		₩	H		++	\vdash	-				<u></u>	<u> </u>	ļ —		<u> </u>	100
46 SO3344 DIMSD-0234380		L V	V	V	Y	V	· •	4	Y		<u> </u>	1	V					<u> </u>		ļ	ļ	1000
47-6-2420	134	<u> </u>	18:25	MRS		2	$\perp \perp$		$\sqcup \!\!\! \perp$		×											
18 500 - 062520	14	6/25/20		1		18					X	×	X	X	×	x	K	λ	X	λ	又	
6 9 STRANSON-061520	16	77	9:35		ø	2	3	1	2		X	X	X									
- 16 MANSONS - 0/2500)			9:40			i	Ti l	1	1		1	T	1									
111 12145 NUCO 00 2500	+ 1M		n. UC	1	1	1	1	1	J.	\Box	1	T	1									
Turnaround Time (Business days)		99	W. 12			Da	ta Delive	rable Ir	formatio	on	72.5				9497	Comr	nents /	Specia	al Instru	ctions		
	Approved by (S	GS Project Manage	er)/Date:	c	ommerci	al "A" (L	evel 1)		□ N.	YASP Cate	egory A		Selec	t VOC	s - 1,4	-Dichlo	oroben	zene;	Benze	ne; Ca	rbon T	Tetrachloride;
X Std. 10 Business Days			-	= 0	ommerci	al "B" (L	evel 2)		□ N	YASP Cate	egory B		Chlore	benze	ene; cı	s-1,2-l	JCE;	CE; v	inyl Ct	nlonde		
5 Day RUSH			_	ı —	JLLT1 (4)		_	tate Forms												
3 Day RUSH		· · · · · · · · · · · · · · · · · · ·	_		J Reduce				_	DD Forma	rt		<u> </u>									
2 Day RUSH			_	°	ommerci				_	ther												
1 Day RUSH		1-2-	-	Commercial			wn Qualit			-	Summan											
other Emergency & Rush T/A data available via LabLink			-	NJ Reduce							Jaminary		Sami	ole inv	/ento:	v is v	erified	Lupon	recei	ot in t	he Lal	boratory
Emergency & Rush I/A data available via LabLink	S	Sample Custody r	must be docu								luding c	ourier	deliver	y. }	5.1101	, .5 V			1			
Relinquighed by Sampler:	D 14:43		- 12					ished By		sh		12	120	Daylory	79)	17	Receive	ed By:	N	V		
Relinquished by Sampler: Date Time:	01272	Received By:					Relinqu	ished By	1 1			4	<u> </u>	Date Tir	ne:	/ /\	Receive	ed By:	0	0-		
Relinquished by: Date Time:		Received By:					Custod	y Seal #			Intact		Preserv		e applic	able	4		On lee	,	Coole	r Temp.
5		5			7 A	_					Not int		1 -					_				
		1-	oitial Acca	cement .	3/4	7 X			1	٠ ـ ١٥٠	KU 1	u <	ئ ک				(1 7	. /.	~7	ر م لا

NaOt+2n/cept > 12

51 26 57

SGS			2235	N OI S North An Route 130 2-329-0200	nerica Ir	c Dayt	on 1810	1			FED-E	X Trackin	g #			Вс	Pottle Orcer			_	OF	2			
Client / Reporting Information				www.sgs	s.com/el		0 0400				SGS C	luote #				S	3S Job #		JD8	3742				100	
ompany Name	Project Name:	NCA M. I		Informati	ion							Req	uestec	Analy	sis (se	e TES	TCOD	E she		20000	1	Matrix C	04		
Rhea Engineers & Consultants		NSA Wech	anicsburg																	- 1		The state of the s			
eet Address	Street							ALC: UNK				6					2	(ANOSO)		1	GV GV	V - Dri <mark>nkir</mark> N - Gr pu n	d bit		
441 Mars Valencia Road	City			Billing Int	ormation	(if differe	ent from Re	eport t	(0)		TMB	(Aroclor 1260)			Ammonia		1	2				WW - W	/as v		
Valencia, PA 16059	City		State	Company I	Vame					A) =	2,4-	- i			E		EF.		0	u i	Etha	SCI - S	de III		10
roject Contact E-mail	Project #			Street Add	ress						- 1,2	Aroc	/Fe)		t-A		SS	ate/r	Sulfide	Sarb	ne,	SED-Sec			
Brad McCalla brad.mccalla@rhea.us	1041 Client Purchase										CS	Bs (/Mn	inity	acha	0	0 1	Ž	al S	ic :	etha	IQ - Othe AIR -	AllA		
724-443-4111	1041-11	Order#		City			State			ip	ect VOCs	- PCBs	etals (ASMS/Mn/Fe)	- Alkalinity	3 H-11 Lachat -	ulfat	I I	28	- Total	orga.	Σ .	SOL - Oth WP - V FB-Field	Vigil		
ampler(s) Name(s) Phone #	Project Manager	THE REAL PROPERTY.		Attention:							elec	260	s (A	1 - A	H-1	Je/S	vled	N N	=	tal C	ME	FB-Field B-Equipm RB- Rins	entre		
like Stear / Jim leng 501412-335-8196	Brad McCal	la									S	P8082PCB1260	etal	SM2320 B-11	I N	Chloride/Sulfate	Dissovled Iron (DISS	353.2/SM4500 NO2B - Nitrate/Nitrite	SM4500S2-F-11	SM5310 - Total Organic Carbon	VRSK175DGMEE - Methane, Ethane,	TB-Tap	Blaff		
Lab ample		Colle	CHOIL				Nu	mber of	preserved t	ottles	V8260SL	82P(- E	320	rö	9	0 - D	2/SIV	5000	310	K17				
# Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled b	y Matrix	# of bottles	1CI 48OH	1N03	4ONE	NCOP	V826	P806	2010	SM2	SM4	300	- 0109	353.2	SM4	SM5	/RSI	LAB US			
EB-062420		G24/20	15:50		GW	5	7	1	1		X	×	V	0,	0,	-		.,	0,	0)	- 1	LAB US			
503M20-062420		1	17:15		I	7	2	1	2		X	~	V.							-			-		
S031/2401-0/22420			17:10			18	3	-	0		-	~	~	١.			V >		1.	. \					
2031/24DID -0<2420			11-10	1		6	2	1	2		X	~	X	X	X.	X	X Z	χ.	X.	X	X		-		
S031/4D1M8 -0(2420						1	3	1	0		1	1	7		in the second			-							
SO3M64DIMSD-062420			1	1	1			-	1		1	1	1.					-							
TB-062420		1	18:25	MOS	H	2		*			V		~						-	-					
S03M50-062520		6/25/20	0.20	MV2		18					×	-	1		-	-			, ,						
203M20D-067270		04 احدام	4:35			10	3		2		X	×	X	X	8	x	W.	X	X	X,	X				
			The second second second		H	9	3	-	4		X	X	X												
\$03M50MS -062520			9:40		1			-			1	1													
SOBMSONSO-062520		V	4:45	V	V	Dot	Dolivere	ble In	4		1	V	V	10.79											
A	pproved by (SGS	S Project Manage	r)/Date:	Пс	ommerci	al "A" (Le			NY.	ASP Cate	gory A		Selec	t VOC	s - 1 4-		nents / S		Instruc	e Car	boa Te	etrachio	riders	30	
X Std. 10 Business Days				_		al "B" (Le			☐ NY	ASP Cate	gory B				ene; cis										
5 Day RUSH 3 Day RUSH					JLLT1 (J Reduce	Level 3+4)		_	te Forms															
2 Day RUSH					ommerci				Ott																
1 Day RUSH other		Mary W. P.				of Know																			
inergency & Rush T/A data available via LabLink				Commercial NJ Reduced							Summan	y	-			, io	orifical	unon	roos	ot in el	الم لما	orator			
	Sam	ple Custody m	ust be docum	nented belo	ow each	time sar	nples ch	ange	possess	ion, inc	luding	courie	delive	ry.	ventor	y 15 V	orme0	upon	TOU	2 111 11	ow will	- Control	d		
Inquished by Sampler: Date Time:	14:43	oceived By:	la-					hed By						Date T	me:		Received	By:							
Inquished by Sampler: Date Time:	Re	ceived By:			7 34		Relinquis	hed By						Date T	ime:		Received	By:				and the Landsman			

CHAIN OF CUSTODY SGS North America Inc. - Dayton

PAGE TOP OF

FED-EX Tracking # 2235 Route 130, Dayton, NJ 08810 TEL. 732-329-0200 FAX 732-329-3499 SGS Quote # SGS Job # JD8742 www.sgs.com/ehsusa Client / Reporting Information Requested Analysis (see TEST CODE sheet) Matrix Codes Project Information Project Name: **NSA Mechanicsburg** Company Name (XN030) DW - Drinking Water Rhea Engineers & Consultants GW - Ground Water 1260) WW - Water Street Ammonia Ethane, SW - Surface Water 441 Mars Valencia Road Billing Information (if different from Report to) 353.2/SM4500 NO2B - Nitrate/Nitrite SO - Soil P8082PCB1260 - PCBs (Aroclor State Company Name Carbon SL- Sludge 1,2,4 SM4500S2-F-11 - Total Sulfide SED-Sediment Valencia, PA 16059 - Methane, 6010 - Dissovled Iron (DISS OI - Oil Project Contact E-mail Street Address Project # LIQ - Other Liquid **Total Organic** AIR - Air Select VOCs **Brad McCalla** brad.mccalla@rhea.us 1041 SOL - Other Solid Chloride/Sulfate Client Purchase Order # City State Zip WP - Wipe SM4500NH 3 H-11 FB-Field Blank VRSK175DGMEE 724-443-4111 1041-11 B-Equipment Blank Sampler(s) Name(s) Project Manager Attention: RB- Rinse Blank - TB-Trip Blank **e**(2)(4)+2-335-8196 Brad McCalla V8260SL SM5310 Collection SM2320 6010 - 1 Sample Field ID / Point of Collection MEOH/D! Vial # Date LAB USE ONLY Time Sampled by Matrix bottles X X X X GW 18 IR × X Turnaround Time (Besiness days) Comments / Special Instructions Data Deliverable Information Approved by (SGS Project Manager)/Date: **NYASP Category A** Select VOCs - 1.4-Dichlorobenzene: Benzene: Carbon Tetrachloride; Commercial "A" (Level 1) X Std. 10 Business Days Chlorobenzene; cis-1,2-DCE; TUE; Vinyl Chloride Commercial "B" (Level 2) NYASP Category B 5 Day RUSH FULLT1 (Level 3+4) State Forms 3 Day RUSH NJ Reduced **EDD Format** 2 Day RUSH Commercial "C" Other 1 Day RUSH NJ Data of Known Quality Protocol Reporting other Commercial "A" = Results Only; Commercial "B" = Results + QC Summary Emergency & Rush T/A data available via LabLink Sample inventory is verified upon receipt in the Laboratory NJ Reduced = Results + QC Summary + Partial Raw data Sample Custody must be documented below each time samples change possession, including courier delivery Received Bi Relinquished By: Relinquished by: ☐ Intact Date Time: On Ice Received By: Custody Seal # Preserved where applicable Cooler Temp. □ Not intact П

Client (Parasi)			2235	North Am Route 130, -329-0200 www.sgs.	Daytor FAX	, NJ 088 732-329	10				SGS Q	CTracking	9#			Bottle C	rder Contro		8742				
Client / Reporting Information	Project Name:			Informatio	on							Req	uested .	Analysis	(see 7	EST C	ODE sh		0142	M	atrix Coc		
hea Engineers & Consultants	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NSA Mecha	inicsburg													1	6		111		1		
Address	Street							Annual State				6					(XN030)			Ethene	- Ground Y		1
41 Mars Valencia Road				Billing Info	ormation	if differer	t from R	eport to)		TMB	1260)		ino			X)			ws sw			
State Zip alencia, PA 16059	City		State	Company N			1				1,2,4 -	clor		Ammonia		FF	Nitri	e	noo	ш .	SO - Soil SL- Sludg ED-Sedim	-	4
ect Contact E-mail	Project #			Street Addr	ess	1						Aro	/Fe)	1		SS	rate/	inffic	Carbon	ane,	OI - OII		
rad McCalla brad.mccalla@rhea.us	1041 Client Purchase 0	Ordor #		07							Select VOCs	SBS	- Metals (ASMS/Mn/Fe)	Alkalinity	te e	6010 - Dissovled Iron (DISS	SM4500 NO2B - Nitrate/Nitrite	- Total Sulfide	Organic	£	AIR - Air		
24-443-4111	1041-11	order #		City			Stati	9	4	ip.	ot V	P	SWS	- Alka	Interior	d Iro	02B	- T	Orga	- ш г	WP - Wip B-Field Bli	10 N	
pler(s) Name(s) Phone #	Project Manager			Attention:					100	3.5	Sele	1260	lls (A	- E	ide/s	ovle	N 00	E	otal	EB-I	Equip <mark>ment</mark> B- Rin se B	3	
re Stock (5: 1 Leggs 142-335-8196	Brad McCall	a Collec	tion				Nu	mher of r		ottles		CB1	Meta	0 B-11	300 - Chloride/Sulfate	Diss	M45	SM4500S2-F-11	SM5310 - Total	75D(TB-Trip Bla		
b pple						u of	1	e 4	in in	_ H	V8260SL	P8082PCB		SM2320 B-	0-0	1-01	18	4500	5310	SK1			
Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled by	Matrix	bottles	HCI NaO	H2SC	NON DI W	ENG	V8	P8	6010	No.	300	-09	353.	SM	SM	> LA	AB USE C		
5846303-062520		6/AS120	10:37	JF	GW	18					×	×	×	x x	00	X	X	X	X:				
503441-062520			12:45	MRS		18					X	X	X	XX	×	X	X	X	X	X			
203WAID-0C 32350			12:50	MRS		6	3)	2		×	X	X										1
503M48-062520		V	13:45	JF	1	18					X	×	X	x X	×	X	X	X	X	X			
THE RESIDENCE OF THE PERSON NAMED IN																							
	19 19 / 1		11111																				
Town Control of the C						Data	Dollar	blo list	ormoti														
Turnaround Time (Business days)	pproved by (SGS	Project Manager)/Date:	Co	ommercia	Data I "A" (Lev			ormation NY	ASP Cate	egory A		Select	VOCs -	Co 1,4-Dic		s / Specia		_	mon Tetr	achionid	e.s.	
X Std. 10 Business Days				c	ommercia	l "B" (Le			NY.	ASP Cate	gory B				e; cis-1,								
5 Day RUSH	7 3 1				JLLT1 (l J Reduce	.evel 3+4)		-		te Forms													
2 Day RUSH				Cc	ommercia	I "C"			Oth	er								No. 1		-			
1 Day RUSH						of Known								11					_				
ergency & Rush T/A data available via LabLink			-	Commercial NJ Reduced						ts + QC	Summary			le inve									

CHAIN OF CUSTODY

PAGE | OF |

,		~ a				SGS	North Am	erica Ind	Davte	on								8	78							
	545 57	\ D				2235	Route 130,	Dayton	, NJ Ó8	810					297	Tackh	135		206	7	Bottle O	rder Conf	irol#	1R-	0/1	120-88
	, ~					TEL. 732	-329-0200			3-3499)				SGS O	cte #		- 0			SGS Jol	#		D874		NO 00
			7				www.sgs.		susa						_	5		4:4	.412.6		COTO	0DF -				Matrix Codes
	Client / Reporting Information		Project Name:				Informatio	on	4					_	 	Heq	DOSTO	Ana	Aata (500 II	ES1 C	ODE 8	ineer)	· ·	•	Mainx Codes
Compa	iny Name	- 1	r rojoct realite.	NS.	A Mecha	anicsburg			1									1				0			Ethene	DW - Drinking Water
	ea Engineers & Consultants																	i				(XNO30)			E	GW - Ground Water
Street	Address	-	Street				1,285			Section 5	. 45 A	10.00	A Same	140	TMB	1260)		l	nia .						ane,	WW - Water SW - Surface Water
	1 Mars Valencia Road						Billing Info		If differe	nt from	Repor	t to)			F			}	Ē			2		_	raf.	SO - Soil
City	State	Zip Zip	City			State	Company N	ame							2,4	양			Ammonia		7	Ę	윤	ğ	, Eth	SL- Sludge SED-Sediment
	lencia, PA	16059					Street Addre								۲,	(Aroclor	Ē		4		SS	- Nitrate/Nitrite	Ē)ar	Methane,	OI - OII LIQ - Other Liquid
•	Contact	E-mail	Project #				Street Addre	855						ì	Cs +		3	€.	hai		ē	量	Š	ic (ţ.	AIR - Air
	ad McCalla brad.mccalla	Pax #	1041 Client Purchase	Order #			City				tate		Zip		Voc	PCBs	(ASMS/Mn/Fe)	- Alkalinity	Lachat	ate	- Dissovied Iron (DISS FF)	1	5	Organic Carbon	ž	SOL - Other Solid WP - Wipe
Phone		rax#		Order #			City			3	rate		νψ	- [ر د	9	S	¥	Ξ		1	2	·	Ö	E .	FB-Field Blank
	4-443-4111 er(s) Name(s) /	Phone #	1041-11 Project Manager				Attention:								Selec	99	₹.		3 H-11	Chloride/Sulfate	ş	Ž	÷	- E	ME	EB-Equipment Blank RB- Rinse Blank
Sampa La .\	· · · · · · · · · · · · · · · · · · ·						rationition.							- 1	Š	312	ta Se	Ξ	Н3	ğ	9	8	2-F	ļ	90	TB-Trip Blank
7: M	Stack Jim Ferros de 412-3	35-6196	Brad McCal	ia [Collec	Hon	i	_		1	Number	of presen	ved bottle		3L.	2	Metals	8	Z	Ĕ	ä	7	S	0-	75	
Lab	•	İ						1		\vdash	TT	T	<u> </u>	¥T	V8260SL	P8082PCB1260	•	SM2320 B-11	SM4500NH	•	6	353.2/SM4500 NO2B	SM4500S2-F-11 - Total Sulfide	SM5310 - Total	VRSK175DGMEE	
Sample	Field ID / Point of Collection		MEOH/DI Vial #	Ι.	Date	Time	Sampled by	Matrix	# of bottles	Ξ Z	HNOS	NONE	MEOH	월	/82	980	6010	ž	Š	300	6010	83	Š	Ž.	Ä	LAB USE ONLY
<u> </u>				-	_			William	-	1.	=	-	0 2 1	-				<u> </u>	<u> </u>	•	-			-	-	
16	S03M22-062550			6/2	<u>s/20</u>	16:19	MRS	GW	6	3	1)	2	$\perp \perp$	$\perp \perp$	×	ᅩ	<u>×</u>									
2	503449-062520	·		نا		16:31	JE		18	Ш	Ш	Ш	\perp	Ш	×	X	×	X	メ	X	X	X	X	X	X	
3	52452-062520					17:10	MQS		6	3)	2			አ	x	×									616
4	503MS1-062520			•	V.	18:30	JF.		6	3	1	2			X	X	V									A15
5	50346302-062620	,		6b	6/20	4:05	MRS						\coprod				1									m24
6	502M6301-062620	5		مر		11:10	MRS			\prod																6713
7	50RNC402-06262	lo				12:55	MRS	П	\sqcap	1	U	V	П	\prod	V	V	V									19m2
d	503 M65D - 062020	3				13:30	701	П	П	3	li	а	\sqcap	П	X	X	Х									V808
-9	503 M73D1-0676 3					12:00	TRE			3	i	7			X	X	×									
30	503 M73D2-6626					K2139	TRA	V	4	3	1	a			X	X	X									
71	TQ-062620			,	V	13:55			2	12	Π		\top	\Box	X				. "							
_	Turnaround Time (Business days)								Data	a Deliv	erable	Informa	tion							Comr	nents /	Specia	Instru	ctions		
			Approved by (SC	S Proje	oct Manage	r)/Date:	c	ommercia	l "A" (Le	vel 1)			NYASP	Catego	ay A		Selec	VOC	s - 1,4·	Dichlo	robena	zene; E	3e nzer	ie; Cai	rbon T	etrachloride;
	X Std. 10 Business Days						□ α	ommercia	i "B" (Le	vel 2)			NYASP	Catego	ory B		Chlor	obenze	ne; cı	5-1,2-L	JCE; T	CE; V	nyl Ch	londe		
	5 Day RUSH	Initig	al Assessm	ent	<u> 3A-P.I</u>	o .	. —	VLLT1 (L)			State Fo				50	0/3	M	. /	۱.			1-1		
	3 Day RUSH	1.05	el Verificat	·	, , ,			J Reduce				_	EDD Fo	rmet			70	<u> </u>	<u> </u>		<u> </u>	<u> 0</u>	76. I	10	7-	
	2 Day RUSH	يسا	or vernical	KOTI	-	•	l 🗀 "	ommercia					Other _				(-1	· .	Ca	سلم	~ ` '	•				
	1 Day RUSH	-							of Know		-		-	~ ~			<u> </u>	e (_		Or					
_	other	-	6b6bc			•	NJ Reduced		•					ac Sun	ппагу	1	Cami	ala inu	anton	, ie v	haitin	unon	racair	at in th	na I ał	oratory
Em	ergency & Rush T/A data available via LabLink	<u> </u>		mple (Custody m	rust be docu								includ	ling co				GINOI	, 13 V	,,,,,GU	3000	Taceil			Olatory
Relia	iquished by Sampler:	Dety Thyon	2.26	Receive	d By:	15.11	ch				ulshed B		6	^ J				Date Jir	NO: 1-	9:30	Receive	d Øy:	~11			
1 Rate	squished by Sampler:	Date Time:	14:85	Receive	1-Co	2 2 2 C	14670	 -		2 Refina	uished 8	y:		ea				Date Tir	7/2o;	20	2 Receive		71			
3			12.42	3		0000	1460	<u> </u>		4				- m							4					
Relin	quished by:	Date Time:		Receive 5	d By:					Custo	ty Seal #	081	502		Intact Not inta		Preserv	ed when	applica	ble	16	24	On Içe		Cooler	3.2%
											l	991	552	,								,				3.40.
				081552																			0 40			

CHAIN OF CUSTODY GW TB SGS North America Inc. - Dayton

FED-EX Tracking #

PAGE 1 OF 2

3 03			2235 Route 130, Dayton, NJ 08810 TEL. 732-329-0200 FAX 732-329-3499								FED-EX	Trackin	g #				Bottle C	order Con	trol #K	2-06	112	0-88
			TEL. 732	-329-0200 www.sgs.			-3499				SGS Qu	uote #					SGS Jo	b #	J	D874	2	
Client / Reporting Information			Project	Informatio	n							Req	ueste	d Anal	lysis (see T	EST C	ODE	sheet)			Matrix Codes
Company Name	Project Name:	NSA Mecha	anicsburg															6			Ethene	
Rhea Engineers & Consultants									10									(XN030)			Ethe	DW - Drinking Wat GW - Ground Wat
treet Address	Street										TMB	1260)			nia							WW - Water SW - Surface Water
441 Mars Valencia Road City State Zip	City		State	Billing Info		if differen	t from Re	port to)		1	٠ ا	1			Ammonia		-	Nitrate/Nitrite		_	Ethane,	SO - Soil SL- Sludge
Valencia, PA 1605			Otato	Company							,2,4	9	<u></u>				S FF)	e/Ni	fide	Carbon		SED-Sediment OI - Oil
Project Contact E-mail	Project #			Street Addre	ess		7			W	+ =	(A	n/F	-	at -		Sic	trat	Sul		han	LIQ - Other Liquid
Brad McCalla brad.mccalla@rhea					P			البنا			Select VOCs	PCBs (Aroclor	(ASMS/Mn/Fe)	Alkalinity	Lachat	te l	Dissovled Iron (DISS		Total Sulfide	Total Organic	Methane,	AIR - Air SOL - Other Solid
Phone # Fax #	Client Purchase	Order #		City			State		Z	ip) ×	- P	SM	Ilka	=	Chloride/Sulfate	1 = =)2B	ř	Org	•	WP - Wipe FB-Field Blank
724-443-4111 Sampler(s) Name(s) Phone	1041-11 Project Manage	r		Attention:							elec		S (A	1	3 H-11	le/S	Ve	NO	5	tal	ME	EB-Equipment Blank
4: ke Stock Jim Regiscon 412-335-819	6 Brad McCa	lla										13	Metals	B-11		oric	SSO	450	32-F	<u>P</u>	SDG.	TB-Trip Blank
' 0		Collec	tion	-	-		Nui	nber of pr	reserved be	ottles] S	2PC		320	000	등	1	NS/	000	10	(17)	
Sample # Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled by	Matrix	# of bottles	HCI	H2SO4	NONE DI Water	ENCORE	V8260SL	P8082PCB1260	6010	SM2320	SM4500NH	300 -	6010	353.2/SM4500 NO2B	SM4500S2-F-11	SM5310	VRSK175DGMEE	LAB USE ONL
32 503112-062920		6/29/20	12:55	MRS	GW	6	3	1	2		X	×	X									1/818
33 SO3M71-062920		1	14:50		1	1	1		+		1	(1									ÉLOO
34 SO3M76-062920			C:35		\top		1	1		\top	+	\top	\top									A22
25 5 34 (26 - / 292			18:30	1			1	1	#	++	+	+	+	<u> </u>								
35 503MC25-062920				_		+			+	++	+	+	+	-		-	-					1 000
36 So3na1 - 062920			17:50		\vdash				H	++	+	+	Н	-	_	-	-	-		\vdash		
37 503NOT-062920			16:00	2	\vdash				H	++	+	\perp	\perp	-	_		-			\square		
38 503M02-062920			14:15		1		1			\perp	1		1								į.	
39 503403-062920		V	19:40)										1	1	Λ		
40 SO3M13-063020		6/30/20	9:30	MRS											Init	al As	Sess	ment	d	Ho	K	
41 503145-063020		17	9:50	-				П										ation				
42 SO3M66D1-063020		1	11:15	MRS	1	1	V	10	1	-	V	1	1	1			THE .	auort				
Turnaround Time (Business days)			111.12	1112		Data	a Delivera	ble Info	ormation				Y			Com	ments	/ Specia	al Instru	ctions		No. 18 Strate Major
	Approved by (S	SGS Project Manag	er)/Date:	c	ommercia	I "A" (Le	vel 1)		NYA	SP Cate	gory A		0.0000000000000000000000000000000000000								rbon T	etrachloride;
X Std. 10 Business Days						I "B" (Le				SP Cate	gory B		Chlor	obenz	ene; ci	IS-1,2-I	DCE;	TCE; v	inyl Ch	londe		
☐ 5 Day RUSH ☐ 3 Day RUSH			-		ULLT1 (l J Reduce		,	-		Format												
2 Day RUSH	123		_		ommercia				Othe										Fla.			
1 Day RUSH			_		NJ Data	of Know	n Quality	Protocol	l Reporti	ng												
other	, 		-	Commercial						s + QC S	ummary			ندا داد		!	o viti o s	Lunam	rossi	nt in th		noroton.
Emergency & Rush T/A data available via LabLink	S	Sample Custody	nust be docu	NJ Reduce						on, inclu	uding c	ourier				100	ennec	upon	recei	Jt in tr	ie Lai	ooratory
Relinquished by Sampler: Date Tim	And BEARING	Received By:	h -1	1			Relinguis	hed By:		0	. 1		0	Date Ti	me:	100	Receive	ed By:	W	01/	1/2	/
Relinquished by Sampler: Date Tim	0:	Received By:	CHIMO	use			2 Relinquis		Utc	Ma	M	al	۵	Date Ti	3-20 me:)	Receiv	ed By:		, .	-	
3 Poliopolished bus		3 Bearings Bur				1.5.	4	Paral #			Intact		Dec	and sub-	la an-ii-	abla	4		Onle		Coole	Temp
Relinquished by: Date Tim	e:	Received By: 5					Custody S	seal #					Preserv	red wher	e applic	able			On Ice	-	Coolei	7 700 3.1

CHAIN OF CUSTODY

PAGE $\frac{1}{2}$ OF $\frac{1}{2}$

SGS North America Inc. - Dayton 2235 Route 130, Dayton, NJ 08810 TEL. 732-329-0200 FAX 732-329-3499

ED-EX Tracking #	Bottle Order Control #	
GS Quote #	SGS Job # JD8742	

Client / Deporting Information			Project	Informatio		usa							Red	uested	l Anal	vsis (see T	EST C	ODE s	heet)			Matrix Codes
Client / Reporting Information	Project Name:			Informatio	J								licq	destet	Allai	, 515 (noot,		e	Matrix Cours
Company Name		NSA Mecha	nicsburg																30			Ethene	DW - Drinking Water
Rhea Engineers & Consultants					nessan estados					1902-91803-920			6			_			(XN030)				GW - Ground Water WW - Water
Street Address	Street											TMB	1260)			Ammonia						Ethane,	SW - Surface Water
441 Mars Valencia Road	0.15		Ctata	Billing Info	,	if differer	nt from	Report	to)			⊣ .				Ĕ			trite		_	tha	SO - Soil SL- Sludge
City State Zip	City		State	Company Na	ine							2,4	90			Am		FF)	Ξ̈́	de	,bo		SED-Sediment
Valencia, PA 16059	Bardant #			Street Addre	ce							₹	(Aroclor	/Fe		1		SS	ate	Sulfide	Carbon	ane	OI - Oil LIQ - Other Liquid
Project Contact E-mail	Project #			Street Addre	33								s (A L	įį	cha		▣	Nitrate/Nitrite	S		Methane,	AIR - Air
Brad McCalla brad.mccalla@rhea.us	1041 Client Purchase	Order #		City			Sta	ate		Zip)	VOCs	- PCBs	IS/	Alkalinity	La	fate	, E	B	Total	Organic	Š	SOL - Other Solid WP - Wipe
THORSE II	April -	Order #		Ekrain						ode		t	٠	ISI	A A	Ξ) n	- -	02	•	ō		FB-Field Blank
724-443-4111 Sampler(s) Name(s) Phone #	1041-11 Project Manager			Attention:		Manufacture of Co.		4				Select	P8082PCB1260	- Metals (ASMS/Mn/Fe)	1	SM4500NH 3 H-11 Lachat	300 - Chloride/Sulfate	Dissovled Iron (DISS	353.2/SM4500 NO2B -	SM4500S2-F-11	Total	VRSK175DGMEE	EB-Equipment Blank RB- Rinse Blank
Campion(c) manie(c)	Brad McCal	la					•."					s -	11	tal	SM2320 B-11	Ξ	oric	SSO	150	12-F	5	Ö	TB-Trip Blank
Mike 5toch Jinkryson 412-335-8196	Brad McCan	Collect	tion				1	Number o	f preser	ved bot	tles	SL	PC	Me	20 8	NO.	홋		WS.	S00	0	175	
Lab					1			4	.] [ter +)RE	560)82	0	232	450	-	0	1.5/	45(53.	SK	X 1911
Sample # Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled by	Matrix	# of bottles	HCI NaOH	HNOS	NON	DI Wa	INCO	V8260SL	P8(6010	SM	SM	300	6010	353	SM	SM5310	\ N	LAB USE ONLY
	WEST VISIT VISIT	(1 1		Cumpica by		1	3	1-1-	2	-	1	_		+									
43 SO3N66D2-063020		(30/20	13:05	MK2	GW	6	3	11	2	_	\vdash	×	X	X									
44 503NIK - 063000		1	11:45	TRE	1	1	7	1	1			X	X	X									J.
44 SO3MIS - 063020 45 TB - 063020		1	13:55	- C		2	3				\Box	X											
40 10-063020		•	12.55	-		04	a	++	7	+	++	-		-	_			+					
								\perp	\perp		\perp		_	_				_				3	
		2																		1		g - 1 h	
							+	1	\top		\vdash			7									
				-			++	+ +	+	+	++	+-	\vdash					-	-				
							$\perp \perp$		\perp									_					
38																							
							+	++	\top		+												
				-			++	++	++	+	++	+-	+	-	-	_	-	-				7	
	- 10																						
																		10.7			300		
Turnaround Time (Business days)						Data	a Delive	erable I	nforma	ation							Com	ments	Specia	al Instru	ctions		A Profession Commence
	Approved by (S	GS Project Manage	er)/Date:	ПС	ommercia	al "A" (Le	evel 1)			NYAS	SP Cate	egory A		Selec	t VOC	s - 1,4	-Dichl	orober	nzene;	Benze	ne; Ca	rbon T	etrachloride;
X Std. 10 Business Days			_	c	ommercia	al "B" (Le	evel 2)			NYAS	SP Cate	egory B		Chlor	obenz	ene; cı	ıs-1,2-	DCE;	TUE; V	'inyl Ch	nloride		
5 Day RUSH	2.18		_	F	ULLT1 (I	Level 3+4)			State	Forms	3											16
3 Day RUSH			_		J Reduce						Forma	at		-								-	
2 Day RUSH	To the same of the		_	c	ommercia																		
1 Day RUSH			_			of Know						_		_			7.77						
other			-	Commercial							+ QC	Summary		0	-la !	.antc	io · ·	o rific -	d unco	rooci	nt in t	ho I o	horaton
Emergency & Rush T/A data available via LabLink		ample Custody n		NJ Reduce							n inc	luding	courier				ry is v 2 ∧ %	ennec	upor	recei	pt in ti	ie La	boratory
Relinquished by Sempler: Date Time:	S	Received By:	nust be doct	imented be	A each	i iiiie sa	Reling	uished F	y:	965510	, IIIC	luuliig (denve	Date Ti		801	Receiv	ed By	m	100	70	1 -
1 36	14:05	1 Kal	1000	nau	bee	8	2	20		UF	2/10	u	bee	3	6-3	0-20	ð	2		H		IN	
Relinquished by Sampler: Date Time:		Received By:					Relinq	uished E	y:						Date Ti	me:		Receiv 4	ed By:				
Relinquished by: Date Time:		Received By:					Custo	dy Seal #		ų .		Intact		Presen	ved whe	re applic	able			On lo	9	Coole	Temp. 70C 3
5		5										Not in	tact	-							7	P	5.2-2

JD8742 Job Change Order:

6/24/2020 Received Date: 7/2/2020 Requested Date: 7/13/2020 Due Date: Rhea Engineers & Consultants, In Account Name:

FULT1 Deliverable: RAOMAC-Mid-Atlantic Navy. Mechanicsburg, PA Project Description:

TAT (Days): PM: KR Χ C/O Initiated By:

4

Change: JD8742-59 Sample #:

Please move sample to A job Dept:

DISP-070120

4

TAT:

Date/Time: 7/2/2020 9:55:05 AM Mike S. Above Changes Per: To Client: This Change Order is confirmation of the revisions, previously discussed with the Client Service Representative.

CHAIN OF CUSTODY

SGS North America Inc. - Dayton
2235 Route 130, Dayton, NJ 08810

TEL 700 200 2000

PAGE 1 OF 2

JUJ					oute 130,					C	, –	•	F	ED-EX	Trackin	#				Bottle O	rder Cor	itrol#	10-	A.C.	1120-88.
				TEL. 732-	329-0200 www.sgs.c			9-34	99				S	GS Quo	ote #					SGS Jo	b#		D874		11V0 DD.
Client / Reporting Information	100			Project	nformatio	APR				100		e de		7.2 X	Rea	ueste	i Anal	vsis (see T	EST C	ODE	theet)	S 400 4		Matrix Codes
Company Name	Project Name:	NSA	Mecha	nicsburg					2.00 100 1100		1/20020001200						700000000000000000000000000000000000000							e e	I I I I I I I I I I I I I I I I I I I
Rhea Engineers & Consultants														ļ							Nitrate/Nitrite (XN030)			Ethene	DW - Drinking Water GW - Ground Water
treet Address	Street				State of the State	A Marie	i filosofida	199262	AST KATA	(Karata)	i gra		9/8/56	፼│	1260)			.e			Ž				WW - Water
441 Mars Valencia Road					Billing Infor	mation (if differ	ent fro	om Rep	ort to)			TMB				Ammonia	1		<u>ğ</u>			Ethane	SW - Surface Water SO - Soil
City State Zip	City			State	Company Na	me		-						2,4	(Aroclor			E I		Æ	慧	윤	Carbon	盂	SL- Sludge SED-Sediment
Valencia, PA 16059 Project Contact E-mail	Project #				Street Addres	26							_	-	Ārō	Fe)				SS	ate/	Sulfide	art	Je,	OI - Oil
Brad McCalla brad.mccalla@rhea.us	1 '				Otreet Addres	,,							- 1	နှာ) s	ĭ,	ıity	Lachat		Iron (DISS	<u>F</u>	Š	ic	Methane,	LIQ - Other Liquid AIR - Air
Phone # Fax #	Client Purchase	Order #			City				State			Zip		VOC.	PCBs	MS/	Alkalinity	La	fate	5		Total	Organic	Ž	SOL - Other Solid WP - Wipe
724-443-4111	1041-11												ĺ	Select		ASI	¥	3 H-11	Sul Sul	ᄝ	NO2B	•		E	FB-Field Blank EB-Equipment Blank
Sampler(s) Name(s) Phone #	Project Manager				Attention:									Sel	126	ıls (=	3 Н	de	٥ آ	8	ī	Total	B G	RB- Rinse Blank
like Stock Jim Sergoton 412-335-8196	Brad McCal	a	C-B- "					_	\$ to me	hor of	preserved	d bottle-		• 1	P8082PCB1260	- Metals (ASMS/Mn/Fe)	B-11	SM4500NH	Chloride/Sulfate	Dissovled	2/SM4500	SM4500S2-F-11		VRSK175DGMEE	TB-Trip Blank
Lab			Collecti	on				\vdash	Num	Der of j	preserved	Dotties	\Box	V8260SL	82P	١-٠	SM2320	200	5		72	500	SM5310	Ž	
sample Field ID / Point of Collection	MEOH/DI Vial #		Date	Time	Sampled by	Matrix	# of bottles	. 로	NaOH	H2S04	NONE DI Wat	MEOH		/82	980	6010	SM2	SM4	300	6010	353.	SM4	SMS	/RS	LAB USE ONLY
	INCOLUDI VIGIT	,					<u></u>		++-			2 4	+	-				-	(3)	-	.,		- " -	\dashv	
46 EB-063020		بخزاعا	20/10		HRS	GW	7	<u>2</u>		+	ე ე	\vdash	++	<u>x</u>	×	X								_	E98
47 SO3H(8D) - 063020				15:45		+	9	12	+ -		4	\vdash	+	++	+	+									A22
48 SO346802-063020				17:45	V	-	+	+	-	μ.	\mathbb{H}	\vdash	++	+	+	+								\dashv	V824
49 203M6901-063020				18:45	J.F		\vdash				-	1	+-	+	-	\perp									
50 503HC902 - 063020				17:05	_		\perp	+	+	Щ		-	+	+	1	\perp									
51 503M46 - 26-3020				<u>15:00</u>		- -	\perp	Ш	Ш		Ш	Ш	$\perp \downarrow$	\perp	\perp	$\perp \!\!\! \perp$									
52 503M44-063020			/	13:50	V			Ш	$\perp \perp$				Ш		\perp	\perp									
53/00-1-070120		7/)	120	9:25	JF			Ш				Ц	Ш	\perp	\perp	\perp									
54.503H67D1-070120			,	11:20	MRS			Ш						Ш											
55 50346702-070120				12:45	MOS	V	\		1	1	V			1	4	V									
56 TB-070120		4		12:10	•		3	2						X											
Turnaround Time (Business days)		Tre of		18.72	A STATE OF THE STA					le Inf	ormatic		18			CASE OF			-			Instru	_	N 16-11	
TI cad to Durings Dave	Approved by (SC	iS Proje	ct Manage	r)/Date:		mmercia	•		•		_	YASP C	-	•								Benzer Inyl Ch		bon Te	etrachloride;
Std. 10 Business Days ☐ 5 Day RUSH	Hial Assessed		24 8	0		mmercia LLT1 (L			2)		_	YASP C	-	ув		Chiore	benze	nie, cis	5-1,Z-L	JUE, I	CE, V	myr Ch	onde		
3 Day RUSH	tial Assessr	nent_	C/\			Reduce		.,		ï	_	DD For													
2 Day RUSH	abel Verifica	tion	!	_	<u></u>	mmercia	I "C"			i	□ ∘	ther		_											
1 Day RUSH						NJ Data			-		-	-													
other					Commercial '								C Sum	mary		Ca	da !=:	anta-	u ie sa	n wifi		****	4 i= 4L		
Emergency & Rush T/A data available via LabLink	Sa	mple C	ustody m	ust be docur	NJ Reduced nented belo								ncludi	ng coi				entor	y is ve	ermed	upon	receip	n in in	e Lab	oratory
Relinquished by Sampler:	0 14:10	Receives	By: ,	/		1 -		Rel	linguishe			ı		ا			Date Tim	16	HO	Receive	d By:	M,	g	~//	ms
Relinquished by Sampler: Date Time:	0 11-10	Received	1 By:	user	and)	aer			linquishe	᠈᠂ᡐ	est	-0h	<u>a</u>	پیں	مص		T-1-			2 Receive	d By:	- 00	00		
Relicevished by		3	1 P				4	-tt	-1.5			☐ ir	too!		Dane	-dt			4		0		0	-	
Relinquished by: Date Time:		Received 5	1 BY:					Cus	stody Se	edi#				itact ot intac		r Teserv	where	applica	IDIO DI DI			On Ice	In	Zooler 3	70c 3.20

CHAIN OF CUSTODY

SGS North America Inc. - Dayton
2235 Route 130 Dayton N.L. 08040

PAGE 2 OF 2

2235 Route 130, Dayton, NJ 08810 TEL. 732-329-0200 FAX 732-329-3499

FED-EX Tracking #	Bottle Order Control #	
SGS Quote #	SGS Job #	JD8742

					www.sgs.	.com/ehs	usa															D0742		
Client / Reporting Information **				Project	Informatio	on				369 A				Req	Jestec	d Analy	/sis (see Ti	STC	ODE si	heet)			Matrix Codes
Company Name	Projec	ct Name:	NSA Mecha	anicsburg																6			Ethene	
Rhea Engineers & Consultants	İ																			- Nitrate/Nitrite (XNO30)			Ě	DW - Drinking Water GW - Ground Water
Street Address	Street				Service medical	A Security	GALLANIA.	62.25	4900		3/3/4	Carrier Service	TMB	1260)			j.			×				WW - Water SW - Surface Water
441 Mars Valencia Road					Billing Info		if differe	nt from	Report	to)			F				Ammonia			ig.			Ethane,	SO - Soil
City State Zi	ip City			State	Company N	lame							4,	(Aroclor			Ē		E	انجا	9	, <u>5</u>		SL- Sludge SED-Sediment
	16059												1,2,	ğ	E					ξ	Sulfide	Carbon	ē,	OI - Oil
•	-mail Projec				Street Addre	ess							+ 5	8	7	<u>.5</u> .	hat		ĕ	<u>F</u>	જ	ပိ	멽	LIQ - Other Liquid AIR - Air
Brad McCalla brad.mccalla@		1041			City				tate		Zip		8	PCBs	S/I	<u> </u>	Lachat	ate	<u> </u>	Z	gal	ä	- Methane,	SOL - Other Solid
		Purchase C	Jider#		City			3	lale		Ζiþ		Select VOCs	- P	(ASMS/Mn/Fe)	Alkalinity	=	Chloride/Sulfate	- Dissovled Iron (DISS	353.2/SM4500 NO2B	- Total	Organic	Li I	WP - Wipe FB-Field Blank
724-443-4111 Sampler(s) Name(s) P		41-11 ct Manager			Attention:								<u>š</u>	9		(3 H-11	e/S	ě	Ž	ξĺ	<u></u>	뿔	EB-Equipment Blank
· · · · · · · · · · · · · · · · · · ·	'	•			rate naon.								Ϋ́	P8082PCB1260	- Metals	B-11	Н3	먇	ုင္တ	200	SM4500S2-F-11	- Total	VRSK175DGME	RB- Rinse Blank TB-Trip Blank
Mile Stock Jim Garage 12-335	5-6190 Brau	McCall	Collec	tion		1	1	Т	Number	of prese	rved bott	les	Ä	ည္	Me	8	SM4500NH	윭	is	₹	SO	6	75	
Lab	1					1			TT.	. 1	ē	끭	ő	821	6	232	150		6	%	55	<u> </u>	꽃	
Sample # Field ID / Point of Collection	MEOH	H/D! Vial #	Date	Time	Sampled by	Matrix	# of bottles	ᅙ	HNO3	NONE	DI Wa	ENCO	V8260SL	8	6010	SM2320	WS.	300	6010	33	Š	SM5310	Ĕ I	LAB USE ONLY
		351 VILL 11	Date			- IVILLIA		1 7	* ± :	+-+	<u> </u>	"		_	_						"			EAD OOL ONE!
5700-70-070120			7/1/20	12:40		GW	6	3	11	2		\sqcup	X	×	ж				$oxed{oxed}$			\longrightarrow		
58 503HO1-070120			7/1/20	11:30	7C	GW	6	3	1	2			X	یلا	X									
								П	П															
1.								П	\prod															
										\sqcap														
									\top															
								\sqcap	††															
								\sqcap		\top														
Turnaround Time (Business days)		i inter				T.	Data	Deliv	erable l	nforma	ation		Page 1	E 2				Comn	nents /	Special	Instruc	ctions	er Kari	
	Approx	ved by (SG	S Project Manage	er)/Date:		ommercia	l "A" (Le	vel 1)			NYAS	P Categ	ory A		Select	t VOCs	- 1,4	-Dichlo	roben:	zene; E	3enzen	ie; Car	bon T	etrachloride;
X Std. 10 Business Days				_	☐ ¢	ommercia	il "B" (Le	vel 2)			NYAS	P Categ	ory B		Chlore	obenze	ne; cı	s-1,2-L	CE; T	CE; VII	nyi Ch	loride		
5 Day RUSH		-		-		ULLT1 (L)			State													
3 Day RUSH				-		J Reduced						Format												
2 Day RUSH				-	l⊣°	ommercia		- 0		ب	Other		_											
☐ 1 Day RUSH ☐ other				-	Commercial		of Know		-				mman,											
Emergency & Rush T/A data available via LabLink				-	NJ Reduce							- 40 30	i i i i i i i i i i i i i i i i i i i		Samr	nle inv	entor	v is ve	arified	upon	receir	nt in th	ne I at	oratory
The state of the capture of the capt		Sar	mple Custody π	nust be docu								n, inclu	ding co	ourier o				46	·········	ароп	. Josep	ar s		
Relinquished by Sampler:	١٧ مدارات		Received by:	10	1,0,	do a	. 1		20		مه	1	1			Date Tirr			Received 2	d By:	AT	T)	2	na
	ite Time:		Received By:		XXXXX.	N. W.	-		uished 5	ly:		40		-(.5-		Date Tim			Received	d By:		~~		
	ite Time:		Received By:					Custo	dy Seal #	+			Intact		Preserve	ed where	applica	able	-		On Ice	T	Cooler	
			3					<u> </u>					Not inta	act								Jp		2-7 5.2

شي

CHAIN OF CUSTODY

SGS North America Inc. - Dayton 2235 Route 130, Dayton, NJ 08810 TEL. 732-329-0200 FAX 732-329-3499

FED-EX Tracking #

PAGE	⊥ OF	\bot
------	------	--------

					www.sgs.d	com/ehs	susa								o adolo					0000		3	DB	14	7
Client / Reporting Informati	ön 🐩			Project	Informatio	n						(F. 12)	14 m			Reque	ested	Analy	sis (see	TEST (CODE s	heet)			Matrix Codes
Company Name		Project Name:	NSA Mecha	nicsburg											T				DOD 24						
Rhea Engineers & Consultants	8															- 1		- 1	8		1 1				V - Drinking Wate V - Ground Wate
treet Address		Street			建物学科学	a emilional	发热的	4.59/21	THE WE	100-6	1.40	V. Carlo		18	ı	- 1	- 1		List		1 1	Ì		- 1	WW - Water
441 Mars Valencia Road					Billing Info	rmation (if differe	nt fro	m Rei	port to	o)								=		1 1	ĺ	- 1	SV	V - Surface Wate SO - Soil
City State	Zip	City		State	Company Na									\neg		- [2	ĺ	1 1	1	- 1		SL- Sludge
Malamaia DA	16059																		AS	ĺ		1	- 1		SED-Sediment
Valencia, PA Project Contact	E-mail	Project #			Street Addre	ss		_						\dashv	- }		- 1	- 1	품		1 1		1	1	OI - Oil IQ - Other Liquid
•																	- 1	- 1	44		1 1	- 1	- 1	J	AIR - Air
Brad McCalla brad.mcc	calla@rhea.us	Client Purchase	Order #		City				State	_		Zij	0	\dashv	- [- 1	- 1	- 1	XLCMSDW4	1	1 1		- 1	s	OL - Other Solid WP - Wipe
					, ,										ł				Š		1 1		- 1		FB-Field Blank
724-443-4111	Phone #	1041-11 Project Manager			Attention:									ے ا	. .	_	- 1		χ		1 1		[-Equipment Blani RB- Rinse Blank
Sampler(s) Name(s)		· · · · ·												17	ַן וְ	듩ㅣ		یه ا	편		1 1	- 1	- 1		TB-Trip Blank
Mile Stock 4	12-335-8196	Brad McCal	Collect	ion	L			Τ	Num	her of	prese	rved bo	ttles	⊢ ફે	5 3	<u>ნ</u>	_ 1	건	8	1	1 1			Ì	,
Lab			Connect			ĺ				1		<u> </u>	T#I	⊣ į		32	<u>₹</u>	ا ق	370			- 1			
Lab Sample # Field ID / Point of Collection	n	MEOH/DI Vial #	Date	Time	Sampled by	Matrix	# of bottles	모	NaOH	H2SO4	NONE	DI Wat	ENCO	ABONDA	200	P8082PCB11	TCLPM	V8260TCLP	LCID37DODFL,						AB USE ONLY
70 0			7/1/20	13:20	MRS	GW.	10				4.0	\neg	П		U	X)	X	X	W.					7	545
59 050-070120		 	11100	12.20	1.16-	GVV	10	+	\vdash	+-	10	+	+	+	\sim	-	~+	~ +	<u>~</u> -		+			-+-	688
1																<u> </u>								Ш_	C.58
				1	i		1						11	- 1		İ	- [-	İ		1 1	i		-1	
		 			-			+-	\vdash	+	+	十	++	_	+	_	-	-+		+				\dashv	
								\perp	\perp	_	1-1	_	+	_	_	_		_			11				-0-
													11		- 1			H	- 1		1.		i	<	CIHS .
					 			+-		+	H	+	1	\neg		_	-	$\overline{}$		_	1 -		-	10	34
							ļ	+	\vdash	+	1-1	-	₩	-	-		_			+	1-1				
				ļ					1				11		1			ļ			1 1		- 1	- 1	
								T	\Box		П														
							-	+	-	+	+-+	-	+	+	+		-+		-	+-	1		-+	-	
									Ш	\perp															
											1		1 1								1				
					<u> </u>			+-	\vdash	+-	+	+	+	+	+	+	-	-+		+-	+ -	-+		+-	
						<u></u>	<u> </u>						ئــــــــــــــــــــــــــــــــــــــ	178220		217001 (C. 4174-2	on terror in terror	AND AND A THE CASE	inceración —					221020 31020	
Turnaround Time (Business of	days)	College Stat	Although the second		32				iveral	ole in	forma										/ Special	Instruc	tions		A STATE OF THE
		Approved by (S	GS Project Manage	er)/Date:	_		al "A" (Le		-		Ш			tegory		IA	nalyze	e PCB	sample fo	or all Po	CBs				
X Std. 10 Business Days			2 4 50				ał "B" (Le)		\Box			tegory	В	<u> </u>									
5 Day RUSH	Initial A	\ssessment_	JANA				Level 3+4)			닏		Form						^^	1 - ^	<	- 7			
3 Day RUSH						J Reduce					Щ		Form	nat		_ -			-	PB	\sim		12		
2 Day RUSH	Label	Verification		-	l ⊟°	ommercia					\Box	Othe				- 1									
1 Day RUSH							of Know		-				-			-									
other				-	Commercial		•						+ QC	Summ	ary	_									
Emergency & Rush T/A data available via	LabLink				NJ Reduce					_				-1					ntory is	venfied	upon	receipt	in the	Labora	atory
	I		ample Custody n	nust be docu	imented bel	ow each	time sa	_	s cha		poss	essic	n, in	ciuain	y cou	rier de	iivery.	ate Time]640	Receiv	ed By	1			
Relinquished by Sampler:	Date Time:	20 14:10	1 Kobei	Achie	بعلين	(Las		2	Z	ران	ses	10	امما	, , ,	مل	al	3 5	7-1-	20	2	-4 by:	117	50		
Relinquished by Sampler:	Date Time:		Received By:					Reli	nquish	ed By	:							ate Time		Receive 4	ed By:	V			
Relinquished by:	Date Time:	4	Received By:				1	Cus	tody S	eal#				Inta		Pr		where	applicable			On Ice	T.O "	oler Tem	e c
			· · · · · · · · · · · · · · · · · · ·					_															TP	-	

REPORT TO: Name: Company: Address: email: Phone: Fax:	Mike Stock Rhea Engine 441 Mars-Vale Valencia, PA Mike Stockald 412-335-8196				-		INVOI Name: Compa Addres email: Phone: Fax:	iny:	-	Br	and Can	re	100	الما	10						ion be	provid	ed)	105 Kno 865	15 Rexville	search	7932	ali	ins	ig	ht	S	
Project Manager: Project Name: Project No.:	Brad McCallo NJA Mechanic 1041	i Sbrz			-		Purcha Subcor MI Quo	ntract	No.	lo.														V	Mor		One: nples onal S						
Report Type: EDD type: Please contact us wit	Standard (default) Microbial Insights Stath any questions about the analy	indard (de		☐ All	other a	availal	ole ED	Ds (5	% su	rcha			Spec	ify El	DD Ty	ype:	ervice				iensi	ve In	terpr	retive	9(15%	6)		listor	ical I	nterp	retive	9 (35)	%)
	Sample Inform	nation					Analy	ses		CEN	ISUS	S: PI	ease	se	lect	the	targe	et or	gani	sm/	gene)	The state of										
MI ID (Laboratory Use Only)	Sample Name	Date Sampled	Time Sampled	Matrix	Total Number of Containers	PLFA	NGS	QuantArray Chlor	QuantArray Petro	DHC (Dehalococcoides)	DHC Functional genes (bvc, tce, vcr)	DHBt (Dehalobacter)	DHG (Dehalogenimonas)	DSM (Desulfuromonas)	DSB (Desulfitobacterium)	EBAC (Total)	SRB (Sulfate Reducing Bacteria-APS)	MGN (Methanogens)	MOB (Methanotrophs)	SMMO	DNF (Dentrifiers-nirS and nirK)	AMO (ammonia oxidizing bacteria)	PM1 (MTBE aerobic)	RMO (Toluene Monooxygenase)	RDEG (Toluene Monooxygenase)	PHE (Phenol Hydroxylase)	NAH (Napthalene-aerobic)	BSSA (Toluene/Xylene-Anaerobic)	add. qPCR:	RNA (Expression Option)*	Other:	Other:	Other:
096RF1	SO3M17-062420	6/24/2	10:05	GW	1					X	X																						
3 4	SO3M18-062420 SO3M54-062420 SO3M64D1-062420 SO3M64D10-062420		19:35 14:35 17:10 17:10		1					1	1					4																	
																						1 20											
Relinquished by:	MSA		Date (24/	20		Re	ceive	d by	9	EY	<		H	Date 1		世	/			8	1/8	195	8	77	32	5 /	44	16		101	2	1/2

Failure to provide sufficient and/or correct information regarding reporting, invoicing & analyses requested information may result in delays for which MI will not be liable.

REPORT TO: Name: Company:	Mike Stock	5			-		INVO Name:	any:	го:	B	R	es paid	100	5	JA		perativ	e that	all info	rmati	on be	provid	ed)	A			bi	iali	ins	sig	ht	S	
Address:	44) Marsolates	1605	4		-		Addre	ss:													_					search							
email: Phone: Fax:	mile.5toch-alt 412-335-6106	hecu. U	2				email: Phone Fax:	:		pr	Dr.	.M	43	-41	١١١	n n	RC		5					865-	573-8								
Project Manager: Project Name: Project No.: Report Type:	Brad McCalka NSA Mechanic 1241	capri	sial Insights Le	vel III raw	- - -	% surch	Purcha Subco MI Que	ntract ote No	No.		sinht	s Leve	el IV (2	25% s	urchar	(an		П	Comr	oreh	ensi	ve In	teror		More No A	Additi	nples onal (Samp	oles	Interp	pretiv	ve (35	5%)
EDD type:	Microbial Insights Sta	andard (de	fault)	□ All	other	availa	ble ED	Ds (5	% su	ırcha	rge)		Spec	ify E	DD T	ype:						VO 111	- Cipi	-	(107	٠,				o.p		0 (00	,,,,
Please contact us wi	th any questions about the analy Sample Inforr		out the COC	at (865) 5	73-818		Analy		- 1			-	-	-		-	targe	-	-		nene												E S
MI ID (Laboratory Use Only)	Sample Name	Date Sampled	Time Sampled	Matrix	Total Number of Containers	PLFA	NGS	QuantArray Chlor	QuantArray Petro	DHC (Dehalococcoides)	DHC Functional genes	DHBt (Dehalobacter)	DHG (Dehalogenimonas)	DSM (Desulfuromonas)	DSB (Desulfitobacterium)	EBAC (Total)	SRB (Sulfate Reducing Bacteria-APS)	MGN (Methanogens)	MOB (Methanotrophs)	SMMO	DNF (Dentriflers-nirS and nirk)	AMO (ammonia oxidizing bacteria)	PM1 (MTBE aerobic)	RMO (Toluene Monooxygenase)	RDEG (Toluene Monooxygenase)	PHE (Phenol Hydroxylase)	NAH (Napthalene-aerobic)	BSSA (Toluene/Xylene-Anaerobic)	qPCR:	RNA (Expression Option)*		Other:	Other:
STREET, STREET	53M50 -062520	6/25/20	9:30	GW	1			Ĭ		X	X																						
8	503M6313-062520 503M41-062520 503M44-062520		10:37 12:45 13:45							+	1																				+		
10	S03M49-062520		16:31	V	*					4	4																						
Relinquished by:	Failure to	provide suff	Date G/G	It is vita				is fille	FOR	TER		& that		Ve:			on is propon may			Tays	18	hịch M	J will	not b	e liab	le.	19		20	>			

APPENDIX B

Historic Data

APPENDIX B-1

Well Construction Data and Historic Water Level Surveys

Appendix B-1 Well Construction Data and Historic Water Level Surveys Site 3 - Ball Road Landfill and Burn Pits

Naval Support Activity, Mechanicsburg, Pennsylvania

		Depth	Depth		Historical	Investigation			Farly In	vestigations			Phase I Bas	seline Injection	Phase I Inte	erim Injection Event	Phase I Find	al Injection Event
W II IB	Reference	Тор	Bottom	Sounded	Depth to	GW Elevation	Depth to	GW Elevation		GW Elevation	Depth to	GW Elevation	Depth to	GW Elevation	Depth to	GW Elevation		GW Elevation (ft,
Well ID	Elevation (ft, NGVD)	Screen	Screen	Depth	Water (ft)		Water (ft)	(ft, NGVD)	Water (ft)	(ft, NGVD)	Water (ft)		Water (ft)	(ft, NGVD)	Water (ft)	(ff, NGVD)	Water (ft)	NGVD)
	(II, NGVD)	(ft)	(ft)	(ff)	2/1	0/1992	12/	14/2001	1,	/2/2002	4/1	15/2002	1/1	3/2004	£	5/6/2004	7,	/8/2004
DD-1	422.79	9.8	56.5	56.5														
DD-2	412.86	29.7	71	30.7							28	384.86	22.15	390.71	16.1	396.76	27.23	385.63
DD-2S	411.15	17	37	37							25.22	227.42	24.02	200.00	44.0	205.00	22.51	227.71
DD-2D DD-3	412.48 410.81	108.5 37	130 77	130.2 54.5							27.36	385.12	21.62	390.86	14.6	397.88	26.74	385.74
DD-3S	410.41	30	50	50														
DD-3D	411.40	108.5	136	136														
DD-04	404.18	18.7	70.4	70.4														
DD-05	388.66			44.9														
DD-6D	411.93	108.5	135	135														
DD-7D	415.24	108.5	135	135														
S02M01	433.94	9.5	69.7	76														
S02M02	436.95	10.5	48.1	53														
S02M03 S02M04	437.73 439.99	7 13	47.7 51.9	44 162.5														
S02M04 S03M01	430.02	17	59.1	102.5	39.72	390.3	43.58	386.44	45.63	384.39	32.94	397.08						
S03M02	430.02	17	77.8	77.5	39.38	390.83	43.34	386.87	45.59	384.62	34.4	395.81						
S03M03	429.46	15	57.3	55.15	36.33	393.13	42.01	387.45	43.98	385.48	34.71	394.75	25.95	403.51	23.2	406.26	29.19	400.27
S03M04	434.69	22.5	57.5	57.2	36.65	398.04	40.91	393.78	41.13	393.56	33.55	401.14						
S03M05	430.6	88.5	110		39.5	391.1	44.36	386.24	45.92	384.68	33.69	396.91						
S03M06	429.56	108.5	130	132.25	38.23	391.33	44.22	385.34	44.5	385.06	35.15	394.41						
S03M07	429.85	83.5	105	106.8	36.45	393.4	42.19	387.66	44.11	385.74	35.5	394.35						
S03M08	433.85	87.5	109	109.6	36.77	397.08	43.3	390.55	45.74	388.11	32.75	401.1						
S03M09 S03M10	424.77 421.85	88.5 88.5	110 110		33.73 31.4	391.04 390.45	37.41 35.13	387.36 386.72	40.33 37.81	384.44 384.04								
S03M10 S03M11	421.65	74.5	94.5		32.98	390.45	36.94	386.06	39.3	383.7								
S03M12	431.76	88.5	110	112.15	33.3	398.46	40.73	391.03	41.86	389.9								
S03M13	428.34	209.5	249.5	>204	33.0	500.10	41.77	386.57	44.46	383.88	31.26	397.08						
S03M14	427.42	17	100	99.75			22.71	404.71	23.8	403.62	22.3	405.12						
S03M15	428.32	209.5	249.5	>204			42.37	385.95	43.76	384.56	35.25	393.07						
S03M16	427.31	15	100	148.6			37.74	389.57	40.44	386.87								
S03M17	427	22	110	105.3			31.65	395.35	35.46	391.54	26.52	400.48	21.8	405.2	18.66	408.34	22.85	404.15
S03M18	427.65	30.5	110	107.8			31.75	395.9	35.44	392.21	25.52	402.13	21.91	405.74	20.31	407.34	21.94	405.71
S03M19 S03M20	433.65 427.67	19 15.5	60 100	60.87 100.65			41.66 11.34	391.99 416.33	43.76 13.7	389.89 413.97								
S03M20 S03M21	427.09	7	100	100.65			25.13	401.96	34.43	392.66	23.9	403.19	12.69	414.4	7.71	419.38	11.9	415.19
S03M22	429.1	42	100	98.6			26.47	402.63	23.74	405.36	20.0	400.10	12.00	717.7	7.71	410.00	11.0	410.10
S03M23	427.31	14	100	100.7				302,00					18.07	409.24	15.7	411.61	17.18	410.13
S03M24	427.29	19	100	97.9														
S03M25	427.17	12	100	89.8												-		
S03M26	426.79	19	100	68.7														
S03M27	426.31	15	100	70.35														
S03M28	426.71	15	100	100.3														
S03M29 S03M30	427.01 426.88	19 12	100 100	21.55 94.63														
S03M30 S03M31	426.88 427.12	21	100	94.63 83.55														
S03M32	426.99	25	100	93.65														
S03M33	427.12	13	100	71.63									19.14	407.98	19.15	407.97	20.57	406.55
S03M34	426.3	7	100	99.5														
S03M35	427.11	11	100	91.95														
S03M36	427.36	16.5	100	26.1									23.1	404.26	27	400.36	22.26	405.1
S03M37	427.48	12	100	14.12														
S03M38	427.27	6	100	81.05														
S03M39	429.75	11	100	102.95													l	

Appendix B-1

Well Construction Data and Historic Water Level Surveys Site 3 - Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

		Depth	Denth		Historical	Investigation			Farly In	vestigations			Phase I Ra	seline Injection	Phase Linte	rim Injection Event	Phase I Find	al Injection Event
	Reference	Тор	Depth Bottom	Sounded		GW Elevation	Depth to	GW Elevation			Depth to	GW Elevation	Depth to	GW Elevation	Depth to	GW Elevation		GW Elevation (ft,
Well ID	Elevation	Screen	Screen	Depth		(ft, NGVD)		(ft, NGVD)	Water (ft)	(ft, NGVD)	Water (ft)		Water (ft)		Water (ft)	(ft, NGVD)	Water (ft)	NGVD)
	(ff, NGVD)	(ft)	(ft)	(ff)		0/1992		14/2001	1,	/2/2002		15/2002		3/2004		5/6/2004		8/2004
S03M40	430.19	30	100	101.3														
S03M41	427.63	15	100	91.47														
S03M42	427.4	10	100	71.32														
S03M43	429.62	29	100	98.13									25.52	404.1	23.17	406.45	29.99	399.63
S03M44	431.53	15	100	98.65									27.76	403.77	29.14	402.39	31.75	399.78
S03M45	432.18	19	100	68.8									28.53	403.65	29.76	402.42	32.6	399.58
S03M46	431.14	12	100	103.6														
S03M47	430.89	13	100	100.25														
S03M48 S03M49	431.05 430.01	13 16	100 100	99.35 88.65														
S03M50	430.01	23	100	100.65														
S03M50 S03M51	429.78	19	100	99.25														
S03M52	430.01	25	100	93.5														
S03M53	429.39	26	100	60.6														
S03M54	429.44	45	100	92.95														
S03M55	428.58	16	100	65.7														
S03M56	427.23	13	100	100.45														
S03M57	427.31	13	100	100														
S03M58	427.45	15	100	93.68														
S03M59	429.15	15	100	19.75														
S03M60	430.71	10	100	98.4														
S03M61S	427.38	22	35.1	35.1														
S03M61D	427.23	105	118.5	118.5														
S03M62S	427.77	31	43.6	43.6														
S03M62D S03M63D1	427.77 429.72	105 200	118.5 250	118.5 240							-							
S03M63D2	430.16	250	270	268														
S03M63D3	430.19	300	358	353														
S03M64D1	427.35	165	185	180														
S03M64D2	427.44	200	220	215														
S03M64D3	427.40	310	330	325														
S03M65D	428.42	210	230	228														
S03M66D1	430.95	170	187	188														
S03M66D2	430.97	190	210	208.5														
S03M67D1	427.74	145	165	163.5														
S03M67D2	427.55	230	250	249														
S03M68D1	429.41	165	185	182														
S03M68D2	429.42	230	250	250														
S03M69D1	438.32	175	195	193				 										
S03M69D2	438.21	210	230	230				 										
S03M70 S03M71	429.93 432.35			353.5 351.9				-										
S03M71 S03M72	432.33		-	348.9														
S03M73D1	429.31		<u> </u>	188.2														
S03M73D2	429.29			349.8				1										
S07M01	421.90	31	65.58	68														
S07M02	423.98	13	66.4	69														
S07M03	420.78	9	65.9	68														
S07M04	422.01	20	64.2	65.5														
S07M05	424.02	20	44.5	44.5														
S07M06	421.14			50														
S08M01	423.89	19	59	112.5														
S08M02	422.30	20	58.8	63														
S08M03	422.17	7	57	55.5														
S08M04	430.82	1.4.4		59.5				-	-									
BF-02	NA NA	14.4	26.4	9.0				1										
BF-03 BF-05	NA 417.10			26				-										
DT-00	417.10					<u> </u>	1	1	1		I			<u> </u>			<u> </u>	

Appendix B-1 Well Construction Data and Historic Water Level Surveys Site 3 - Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

Company Comp					I			- · · · · ·				1	C)W		OW/		0.11		0111		OW.
No. Section		Reference	Depth -	Depth	Sounded							Depth to	GW								
10 10 10 10 10 10 10 10	Well ID	Elevation			Depth							Water (ft)		Water (ft)		Water (ft)		Water (ft)		Water (ft)	Elevation (ft,
1952 1958 1967 1968 1967 1968 1969		(ff, NGVD)			(ft)							0 /4		4/2		7/		5/19		5/10-	NGVD)
DP-5 ST-2996 ST-7 T1 ST-7	DD 1	499.70		• •	56.5	0,	/17/2004	,	7/24/2004	- 11	/ 12/2004	7/0	/2003	0/2	0/2000	•	<u> </u>			,	406.59
DP 29	-				1	99.4	390.46	20.44	302.42	97.1	385.76	10.64	402 22	11.69	401.17		+				392.58
Dec-strict The property The pr	-					22.4	550.40	20.44	332.42	21.1	365.76	10.04	402.22	11.03	401.17	1					392.33
Dig	-					21.85	390.63	19.65	392.83	26.52	385.96	28 99	383 49	29.25	383 23	1		1			394.29
DD-18						21.00	300.00	10.00	002.00		000.00	20.00	303.10	20.20	300.20						383.66
Third					1																383.70
Dec Section Continue Cont	-		108.5	136	136																386.43
DD-DD 11193 108-5 155 135	DD-04	404.18	18.7	70.4	70.4											15.98	388.20	19.23	384.95	19.03	385.15
DD-70	DD-05	388.66			44.9											17.01	371.65	16.71	371.95	Aband	oned 8/09
Separation 433 54	DD-6D	411.93	108.5	135	135											22.40	389.53	25.29	386.64	23.98	387.95
September 1973 1975 19	DD-7D	415.24	108.5	135	135											16.90	398.34	18.02	397.22	16.50	398.74
SPECANICA 437.73 7	S02M01	433.94	9.5	69.7	76											24.58	409.36	23.58	410.36	Aband	oned 8/09
Separate 13	S02M02	436.95	10.5	48.1	53											31.46	405.49	25.10	411.85	20.32	416.63
South Sout	S02M03	437.73	7	47.7	44											24.91	412.82	23.42	414.31	Aband	oned 8/09
March Marc	S02M04	439.99	13	51.9	162.5											34.35	405.64	27.58	412.41	Aband	oned 8/09
SOMMON 429-46 15	S03M01	430.02	17	59.1								35.43	394.59	37.21	392.81	32.95	397.07	25.85	404.17	23.58	406.44
SOMMO	S03M02	430.21	17	77.8	77.5							32.98	397.23	37.45	392.76	33.60	396.61	26.07	404.14	23.82	406.39
SOMMON 49.96 88.5 110	S03M03	429.46	15	57.3	55.15	25.9	403.56	21.42	408.04	30.48	398.98	33.76	395.53	35.43	393.86	31.39	398.07	24.32	405.14	22.56	406.90
SOMMOR 149.56 108.5 130 132.25	S03M04	434.69	22.5	57.5	57.2							35.51	399.18	37.68	397.01	30.31	404.38	26.12	408.57	22.09	412.60
SOMMON 449.85 88.5 105 106.8	S03M05	430.6	88.5													34.59					407.31
SOMMOR 433.85 87.5 109 109.6	S03M06	429.56	108.5	130	132.25							35.00	394.56	36.73	392.83	33.62	395.94	25.28	404.28	23.29	406.27
Second 424.77 88.5 110					106.8																407.11
Second 421.85					109.6																412.59
SOM11																					406.99
SOM12 431.76 88.5 110 112.15																					406.87
Second 48.34 209.5 249.5 224																	+				406.52
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																					
S03M16 428.32 209.5 249.5 >294 9 40.61 19.22 408.09 26.44 400.87 30.55 395.76 32.26 395.05 27.47 39.84 402.22 407.09 19.45 S03M17 427 22 110 105.3 20.6 406.4 18.07 408.09 26.44 400.87 30.55 396.76 32.26 395.05 27.47 39.84 402.22 407.09 19.45 S03M18 427.65 30.5 110 107.8 21.64 406.01 18.75 408.9 22.21 405.08 25.44 401.09 23.34 404.22 18.02 409.63 17.92 S03M19 433.65 19 60 60.87 2 407.09 7 408.9 22.21 405.44 25.68 401.97 26.62 401.03 39.31 39.14 404.51 26.88 S03M21 427.67 15.5 100 100.65 12.75 414.92 40.24	-															1		1			406.84
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																					406.87
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						20.5	10.1.01	10.00	400.00	20.44	400.05										406.40
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-															1					407.86
S03M19 433.65 19 60 60.87 427.67 15.5 100 100.65 12.75 414.92 13.08 414.59 13.41 414.26 12.14 415.53 12.67 415.53 12.67 415.53 12.67 415.53 12.67 415.53 12.67 415.53 12.67 415.53 12.67 415.53 12.67 415.00 12.78 S03M2 427.67 15.5 100 108.05 4 4 24.93 402.16 27.37 399.72 7.43 419.66 17.30 450.00 12.78 S03M22 429.1 42 100 98.6 18.91 410.19 15.4 413.7 22.72 406.38 26.27 402.83 26.34 402.76 18.99 410.11 20.65 408.45 17.18 S03M23 427.31 14 100 100.7 4 413.7 22.72 406.38 26.27 402.83 26.34 402.76 18.99 410.01 11.22																1		1			409.56
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1	21.64	406.01	18.79	408.9	22.21	405.44						+				409.73
S03M21 427.09 7 100 103.05 409.79 14.46 S03M22 429.1 42 100 98.6 18.91 410.19 15.4 413.7 22.72 406.38 26.27 402.83 26.34 402.76 18.99 410.11 20.65 408.45 17.18 S03M23 427.31 14 100 100.77 18.99 410.03 15.29 412.02 16.06 S03M24 427.29 19 100 97.9 100 97.9 100 89.8 16.06 18.99 400.4 17.28 410.03 15.29 412.02 16.06 16.06 16.06 16.06 17.30 409.04 17.28 410.03 15.29 412.02 16.06 16.06 16.06 17.30 409.04 17.28 410.03 15.29 412.02 16.06 16.06 16.06 16.06 17.18 409.03 22.05 400.04 17.28 400.08 22.01 400.04 12.23 414.04	-					19.75	414.09									1					406.77 414.89
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						12.75	414.92									1					412.63
S03M23 427.31 14 100 100.7 18.89 408.42 18.27 409.04 17.28 410.03 15.29 412.02 16.06 S03M24 427.29 19 100 97.9 26.05 401.24 27.43 399.86 25.71 401.58 18.61 408.68 18.32 S03M25 427.17 12 100 89.8 29.06 398.11 31.27 395.90 25.09 402.08 14.47 412.70 16.22 S03M26 426.79 19 100 68.7 21.11 405.68 21.65 405.14 19.43 407.36 14.03 412.76 15.85 S03M27 426.31 15 100 70.35 17.28 409.03 22.05 404.26 22.73 403.58 21.55 404.76 13.64 412.67 18.09 408.22 18.45 S03M29 427.01 19 100 21.55 400.46 22.73 403.20 24.83 401.88			•			18 01	410.19	15.4	412.7	99 79	406.38						+				411.92
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1	10.31	410.13	10.4	410.7	22.12	400.50										411.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																1		1			408.97
S03M26 426.79 19 100 68.7 100 70.35 17.28 409.03 22.05 404.26 22.73 403.58 21.55 404.76 13.64 412.67 18.09 408.22 18.45 S03M28 426.71 15 100 100.3 100.4 110.59 15.38 100.4 110.59 15.38 100.4 110.59 15.38 100.4 110.59 15.38 100.4 110.59 15.38																					410.95
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-																+				410.94
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								17.28	409 03	22 05	404 26					1					407.86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								11.20	100.00	22.00	101.20										411.33
S03M30 426.88 12 100 94.63 19.98 406.90 13.28 413.60 12.23 414.65 13.57 413.31 17.03 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>409.59</td></t<>																					409.59
S03M31 427.12 21 100 83.55 9 S03M32 426.99 25 100 93.65 93.65 93.65 S03M33 427.12 13 100 71.63 7 100 99.5 S03M34 426.3 7 100 99.5 99.5 99.5						1															409.85
S03M32 426.99 25 100 93.65 100 93.65 17.45 409.54 17.30 S03M33 427.12 13 100 71.63 100 21.25 405.87 22.00 405.12 20.68 406.44 18.17 408.95 18.53 S03M34 426.3 7 100 99.5 100 23.50 402.80 22.65 403.65 12.18 414.12 18.43 407.87 18.56																					407.85
S03M33 427.12 13 100 71.63 21.25 405.87 22.00 405.12 20.68 406.44 18.17 408.95 18.53 S03M34 426.3 7 100 99.5 99.5 23.50 402.80 22.65 403.65 12.18 414.12 18.43 407.87 18.56																1					409.69
S03M34 426.3 7 100 99.5 12.18 414.12 18.43 407.87 18.56																					408.59
																					407.74
5005005000000000000000000000000000000	S03M35	427.11	11	100	91.95							26.74	400.37	20.65	406.46	14.30	412.81	19.05	408.06	19.21	407.90
	S03M36			100	26.1	22.06	405.3	17.53	409.83	22.4	404.96	22.60	404.76	22.47				15.03	412.33		410.06
	S03M37	427.48	12	100	14.12					26.59	400.89	*	< 413.36		< 413.36	14.21	413.27	*	< 413.36	*	< 413.36
	S03M38	427.27	6	100	81.05	23.12	404.15	19.5	407.77		_	28.65	398.62	29.15	398.12	27.79	399.48	21.49	405.78	19.81	407.46
GOMEO 100 FF 11 100 100 OF 100	S03M39	429.75	11	100	102.95	12.94	416.81	15.44	414.31	15.99	413.76	18.02	411.73	17.10	412.65	12.46	417.29	15.19	414.56	15.97	413.78

Appendix B-1

Well Construction Data and Historic Water Level Surveys Site 3 - Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

		Danilla	Davidh		Dhesa II D	madina Inication	Dhara II lai	ovine Inication Frank	Dhesa II Fin	al Inication Frank		CW		CW		CW		CW		CW
	Reference	Depth Top	Depth Bottom	Sounded		GW Elevation	Depth to	erim Injection Event GW Elevation	Depth to	al Injection Event GW Elevation	Depth to	GW Elevation (ft,	Depth to	GW Elevation (ft,	Depth to	GW Elevation (ft,	Depth to	GW Elevation (ft,	Depth to	GW Elevation (ft,
Well ID	Elevation	Screen	Screen	Depth	Water (ft)	NGVD)	Water (ft)	(ff, NGVD)	Water (ft)	(ff, NGVD)	Water (ft)	NGVD)	Water (ft)	NGVD)	Water (ft)	NGVD)	Water (ft)	NGVD)	Water (ft)	NGVD)
	(ft, NGVD)	(ft)	(ft)	(ft)	8,	17/2004	9	7/24/2004	11,	/12/2004	9/6	/2005	6/20	/2006	7/7	//2008	5/18	/2009	5/10-	11/2010
S03M40	430.19	30	100	101.3							29.86	400.33	29.93	400.26	17.15	413.04	23.48	406.71	22.61	407.58
S03M41	427.63	15	100	91.47							31.56	396.07	33.10	394.53	28.13	399.50	22.19	405.44	20.49	407.14
S03M42 S03M43	427.4 429.62	10 29	100 100	71.32 98.13							31.32 29.81	396.08 399.81	32.78 30.52	394.62 399.10	29.51 28.64	397.89 400.98	21.04 24.47	406.36	19.78 22.78	407.62 406.84
S03M44	431.53	15	100	98.65	29.75	401.78	31.2	400.33	28.76	402.77	36.77	394.76	38.45	393.08	33.66	397.87	26.96	404.57	24.66	406.87
S03M45	432.18	19	100	68.8	28.82	403.36	30.23	401.95	29.59	402.59	37.50	394.68	39.23	392.95	35.64	396.54	27.90	404.28	25.44	406.74
S03M46	431.14	12	100	103.6	18.4	412.74	18.9	412.24	16.91	414.23	19.90	411.24	19.59	411.55	16.73	414.41	17.39	413.75	17.48	413.66
S03M47	430.89	13	100	100.25	19.45	411.44					22.05	408.84	22.38	408.51	21.62	409.27	15.70	415.19	14.10	416.79
S03M48 S03M49	431.05 430.01	13 16	100 100	99.35 88.65			12.81	417.2	17.27	412.74	28.01 22.38	403.04 407.63	28.77 22.83	402.28 407.18	28.79 21.41	402.26 408.60	16.05 14.61	415.00 415.40	13.88 13.02	417.17
S03M50	430.07	23	100	100.65	17.9	412.17	12.01	111,2	11.21	112,71	21.14	408.93	21.33	408.74	21.05	409.02	15.17	414.90	13.24	416.83
S03M51	429.78	19	100	99.25							22.65	407.13	23.22	406.56	21.96	407.82	14.19	415.59	12.58	417.20
S03M52	430.01	25	100	93.5							25.83	404.18	26.43	403.58	19.73	410.28	21.69	408.32	18.20	411.81
S03M53 S03M54	429.39 429.44	26 45	100 100	60.6 92.95	17.56	411.88	12.86 12.18	416.53 417.26	15.32 15.09	414.07 414.35	24.34 23.35	405.05 406.09	25.28 25.15	404.11	19.95 21.48	409.44 407.96	14.00 14.05	415.39 415.39	12.38 12.56	417.01 416.88
S03M55	429.44	16	100	65.7	19.4	409.18	15.1	417.26	22.47	406.11	25.12	408.09	25.78	404.29	17.89	410.69	20.27	408.31	16.78	411.80
S03M56	427.23	13	100	100.45	10.1	100.10	10.1	110.10	22.11	100.11	30.57	396.66	32.23	395.00	25.65	401.58	18.93	408.30	18.94	408.29
S03M57	427.31	13	100	100							19.29	408.02	19.14	408.17	18.11	409.20	13.92	413.39	15.11	412.20
S03M58	427.45	15	100	93.68	19.3	408.15	17.1	410.35	19.6	407.85	19.10	408.35	19.74	407.71	17.20	410.25	13.55	413.90	15.42	412.03
S03M59 S03M60	429.15 430.71	15 10	100 100	19.75 98.4	26.95	402.2	23.2	405.95	31.76	398.95	* 35.51	< 409.40 395.20	Abandor 37.22	ed 4/25/06 393.49	Abandor 32.58	ned 4/25/06 398.13	Abandon 25.97	ed 4/25/06 404.74	Abandor 23.89	ed 4/25/06 406.82
S03M61S	427.38	22	35.1	35.1					31.70	590.95	55.51	399.20	31.22	393.49	26.90	400.48	18.81	404.74	16.85	410.53
S03M61D	427.23	105	118.5	118.5											30.73	396.50	22.30	404.93	19.39	407.84
S03M62S	427.77	31	43.6	43.6											26.20	401.57	20.51	407.26	17.05	410.72
S03M62D	427.77	105	118.5	118.5											26.89	400.88	20.51	407.26	16.98	410.79
S03M63D1	429.72	200	250	240																
S03M63D2 S03M63D3	430.16 430.19	250 300	270 358	268 353																
S03M64D1	427.35	165	185	180																
S03M64D2	427.44	200	220	215																
S03M64D3	427.40	310	330	325																
S03M65D S03M66D1	428.42 430.95	210 170	230 187	228 188																
S03M66D1	430.95	190	210	208.5																
S03M67D1	427.74	145	165	163.5																
S03M67D2	427.55	230	250	249																
S03M68D1	429.41	165	185	182																
S03M68D2 S03M69D1	429.42 438.32	230 175	250 195	250 193																
S03M69D2	438.21	210	230	230																
S03M70	429.93			353.5																
S03M71	432.35			351.9																
S03M72	428.44			348.9																
S03M73D1 S03M73D2	429.31 429.29			188.2 349.8																
S07M01	421.90	31	65.58	68											23.15	398.75	26.94	394.96	21.55	400.35
S07M02	423.98	13	66.4	69											21.60	402.38	24.92	399.06	20.27	403.71
S07M03	420.78	9	65.9	68											26.19	394.59	18.29	402.49	15.44	405.34
S07M04	422.01	20	64.2	65.5											24.50	397.51	17.39	404.62	14.80	407.21
S07M05 S07M06	424.02 421.14	20	44.5	44.5 50											28.60 23.86	395.42 397.28	21.18 17.12	402.84	18.51 14.61	405.51 406.53
S08M01	423.89	19	59	112.5											27.22	396.67	19.64	404.02	16.96	406.93
S08M02	422.30	20	58.8	63											25.02	397.28	18.06	404.24	15.47	406.83
S08M03	422.17	7	57	55.5											25.09	397.08	18.28	403.89	15.68	406.49
S08M04	430.82	14.4		59.5											26.69	404.13	21.74	409.08		oned 8/09
BF-02 BF-03	NA NA	14.4	26.4	26											22.01 20.78	NA NA	17.64 15.69	NA NA	16.02 14.53	NA NA
BF-05	417.10														22.69	394.41	17.64	399.46	16.11	400.99
			1	1	1	1		<u> </u>	1	1	1		1							

Appendix B-1 Well Construction Data and Historic Water Level Surveys Site 3 - Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

		.	- II			CW		CW		CW		CW		CW		CW		CW		CW		CW
	Reference	Depth	Depth	Sounded	Depth to	GW	Depth to	GW Elevation (ft,	Depth to	GW Elevation (ft,	Depth to	GW Elevation (ft,	Depth to	GW	Depth to	GW Elevation (ft,	Depth to	GW Elevation (ft,	Depth to	GW Elevation (f	Depth to	GW
Well ID	Elevation	Top	Bottom	Depth	Water (ft)	Elevation (ft, NGVD)	Water (ft)	NGVD)	Water (ft)	NGVD)	Water (ft)	NGVD)	Water (ft)	Elevation (ft, NGVD)	Water (ft)	NGVD)	Water (ft)	NGVD)	Water (ft)	NGVD)	Water (ft)	Elevation (ft, NGVD)
	(ff, NGVD)	Screen (ft)	Screen (ft)	(ff)	5/2	2/2011	6/4/	2012	5/6/		5/21	/2014	5/11/:		5/9/		12/4	/2017	5/18	/2018	5/6/:	
DD-1	422.79	9.8	56.5	56.5	14.13	408.66	16.4	406.39	30.08	392.71	14.25	408.54	25.65	397.14	22.04	400.75	32.10	390.69	14.71	408.08	15.96	406.83
DD-2	412.86	29.7	71	30.7	8.83	404.03	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA
DD-2S	411.15	17	37	37	8.38	402.77	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA
DD-2D	412.48	108.5	130	130.2	7.32	405.16	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA
DD-3	410.81	37	77	54.5	18.58	392.23	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA
DD-3S	410.41	30	50	50	18.17	392.24	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA
DD-3D	411.40	108.5	136	136	15.97	395.43	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA
DD-04	404.18	18.7	70.4	70.4	16.54	387.64	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA
DD-05	388.66			44.9		loned 8/09	l	ned 8/09		ned 8/09		ned 8/09	Abandon		+	ned 8/09	1	ned 8/09	Abando	oned 8/09	Abandoi	
DD-6D	411.93	108.5	135	135	13.19	398.74	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA
DD-7D	415.24	108.5	135	135	7.81	407.43	16.54	398.7	23.71	391.53	10.08	405.16	23.38	391.86	21.75	393.49	27.00	388.24	11.94	403.30	14.29	400.95
S02M01	433.94	9.5	69.7	76		loned 8/09	Abando			ned 8/09		ned 8/09	Abandon		Abando		1	ned 8/09	1	oned 8/09	Abando	
S02M02	436.95	10.5	48.1	53	11.06	425.89	25.95	411	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
S02M03 S02M04	437.73 439.99	7 13	47.7 51.9	44 162.5	1	loned 8/09 loned 8/09	Abando Abando		Abando: Abando:			ned 8/09 ned 8/09	Abandon Abandon		Abando Abando			oned 8/09 oned 8/09		oned 8/09 oned 8/09	Abando	
S03M01	430.02	17	59.1		18.90	411.12	26.46	403.56	36.49	393.53	23.11	406.91	32.41	397.61	31.91	398.11	30.79	399.23	16.25	413.77	Abandor 24.79	405.23
S03M01	430.02	17	77.8	77.5	19.10	411.12	26.46	403.47	36.49	393.27	23.11	406.91	32.81	397.61	32.33	397.88	37.92	392.29	23.87	406.34	22.3	405.25
S03M03	429.46	15	57.3	55.15	17.36	412.10	25.32	404.14	34.95	394.51	21.89	407.57	30.81	398.65	30.60	398.86	35.40	394.06	21.89	407.57	22.3	407.16
S03M04	434.69	22.5	57.5	57.2	14.32	420.37	26.84	407.85	NM	NM	22.31	412.38	31.11	403.58	31.79	402.90	30.48	404.21	21.21	413.48	23	411.69
S03M05	430.6	88.5	110		18.74	411.86	27.3	403.3	NM	NM	23.60	407.00	32.23	398.37	32.63	397.97	32.13	398.47	17.14	413.46	24.86	405.74
S03M06	429.56	108.5	130	132.25	18.84	410.72	28.24	401.32	NM	NM	23.24	406.32	30.33	399.23	33.50	396.06	35.20	394.36	26.51	403.05	24.01	405.55
S03M07	429.85	83.5	105	106.8	17.54	412.31	25.5	404.35	35.11	394.74	22.07	407.78	30.95	398.9	30.79	399.06	35.38	394.47	21.98	407.87	19.9	409.95
S03M08	433.85	87.5	109	109.6	13.62	420.23	26.16	407.69	NM	NM	21.57	412.28	30.41	403.44	31.06	402.79	34.56	399.29	21.81	412.04	22.3	411.55
S03M09	424.77	88.5	110		13.59	411.18	21.18	403.59	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
S03M10	421.85	88.5	110		10.73	411.12	18.25	403.6	NM	NM	14.78	407.07	24.19	397.66	23.74	398.11	29.30	392.55	18.33	403.52	15.2	406.65
S03M11	423	74.5	94.5		12.28	410.72	19.57	403.43	NM	NM	16.04	406.96	25.68	397.32	25.95	397.05	30.84	392.16	NM	NM	16.56	406.44
S03M12	431.76	88.5	110	112.15	10.97	420.79	25.21	406.55	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
S03M13	428.34	209.5	249.5	>204	17.19	411.15	24.92	403.42	33.5	394.84	21.45	406.89	30.49	397.85	30.33	398.01	36.07	392.27	18.45	409.89	22.3	406.04
S03M14	427.42	17	100	99.75	15.52	411.90	20.8	406.62	21.13	406.29	19.91	407.51	21.19	406.23	20.93	406.49	21.66	405.76	19.72	407.7	20.4	407.02
S03M15	428.32	209.5	249.5	>204	16.83	411.49	24.91	403.41	33.18	395.14	21.34	406.98	30.38	397.94	30.35	397.97	35.44	392.88	18.73	409.59	21.1	407.22
S03M16	427.31	15	100	148.6	14.71	412.60	21.52	405.79	28.88	398.43	18.03	409.28	27.35	399.96	17.10	410.21	31.28	396.03	14.71	412.6	15.72	411.59
S03M17 S03M18	427 427.65	22 30.5	110 110	105.3 107.8	13.60 14.02	413.40 413.63	19.06 19.55	407.94 408.1	26.49 26.98	400.51 400.67	17.06 17.17	409.94 410.48	23.71 24.15	403.29	23.12 23.90	403.88 403.75	25.18 25.52	401.82 402.13	16.28 17.06	410.72 410.59	17 17.59	410 410.06
S03M19	433.65	19	60	60.87	22.50	411.15	29.91	403.74	26.96 NM	100.67 NM	26.6	410.48	35.86	397.79	35.31	398.34	40.50	393.15	25.83	410.39	25.86	410.06
S03M20	427.67	15.5	100	100.65	8.84	418.83	12.38	415.29	10.1	417.57	0.92	426.75	3.58	424.09	1.50	426.17	3.93	423.74	0.89	426.78	0.28	427.39
S03M21	427.09	7	100	103.05	17.20	409.89	13.6	413.49	25.65	401.44	10.97	416.12	21.38	405.71	19.85	407.24	25.55	401.54	8.48	418.61	9.21	417.88
S03M22	429.1	42	100	98.6	12.20	416.90	21.44	407.66	26.43	402.67	16.95	412.15	25.60	403.50	25.51	403.59	26.81	402.29	17.82	411.28	17.61	411.49
S03M23	427.31	14	100	100.7	13.02	414.29	15.87	411.44	NM	NM	13.21	414.10	27.11	400.20	14.78	412.53	18.94	408.37	15.13	412.18	15.61	411.7
S03M24	427.29	19	100	97.9	13.80	413.49	23.16	404.13	NM	NM	17.98	409.31	22.04	405.25	22.14	405.15	22.91	404.38	18.21	409.08	16.59	410.7
S03M25	427.17	12	100	89.8	13.30	413.87	15.45	411.72	NM	NM	14.98	412.19	22.78	404.39	14.32	412.85	24.43	402.74	11.93	415.24	12.33	414.84
S03M26	426.79	19	100	68.7	12.34	414.45	15.15	411.64	NM	NM	14.38	412.41	18.56	408.23	13.74	413.05	19.95	406.84	11.12	415.67	11.57	415.22
S03M27	426.31	15	100	70.35	**	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA	Abandoned	NA
S03M28	426.71	15	100	100.3	12.25	414.46	15.66	411.05	NM	NM	14.38	412.33	19.54	407.17	19.18	407.53	21.06	405.65	15.52	411.19	14.5	412.21
S03M29	427.01	19	100	21.55	13.36	413.65	16.65	410.36	NM	NM	16.60	410.41	19.50	407.51	16.59	410.42	20.40	406.61	14.99	412.02	15.56	411.45
S03M30	426.88	12	100	94.63	12.94	413.94	12.62	414.26	NM	NM	12.22	414.66	18.94	407.94	18.38	408.50	19.91	406.97	12.86	414.02	13.15	413.73
S03M31	427.12	21	100	83.55	13.40	413.72	18.36	408.76	NM	NM	14.60	412.52	25.88	401.24	22.43	404.69	28.47	398.65	14.92	412.2	18.24	408.88
S03M32	426.99	25	100	93.65	13.20	413.79	19.01	407.98	NM	NM	17.17	409.82	21.42	405.57	21.02	405.97	21.84	405.15	16.77	410.22	17.41	409.58
S03M33 S03M34	427.12 426.3	13 7	100	71.63	14.45 12.29	412.67	19.55 18.45	407.57 407.85	NM NM	NM NM	18.28 12.29	408.84 414.01	20.97 23.93	406.15 402.37	20.30 21.50	406.82 404.80	21.82 25.78	405.30 400.52	17.54 14.42	409.58 411.88	18.2 17.35	408.92 408.95
S03M34 S03M35	426.3	11	100 100	99.5 91.95	13.29	414.01 413.82	18.45	407.85	NM NM	NM	18.67	414.01	25.98	402.37	26.57	404.80	28.60	398.51	15.14	411.88	17.35	408.95
S03M36	427.36	16.5	100	26.1	13.15	413.82	15.78	412.29	NM	NM	14.00	413.36	22.38	404.98	15.32	412.04	22.72	404.64	13.14	411.97	12.5	414.86
S03M37	427.48	12	100	14.12	14.25	413.23	*	NA	NM	NM	14.00	*	*	101.00	10.02	# T12.01		*	10.22	*	12.0	t 111.00
S03M38	427.27	6	100	81.05	14.25	412.32	22.14	405.13	NM	NM	19.48	407.79	26.93	400.34	28.62	398.65	29.00	398.27	18.34	408.93	20.11	407.16
S03M39	429.75	11	100	102.95	13.10	416.65	14.62	415.13	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM

Appendix B-1

Well Construction Data and Historic Water Level Surveys Site 3 - Ball Road Landfill and Burn Pits Naval Support Activity, Mechanicsburg, Pennsylvania

		Depth	Donth			GW		GW		GW		GW		GW		GW		GW		GW		GW
	Reference	Тор	Depth Bottom	Sounded	Depth to	Flevation (ft	Depth to	Elevation (ft,	Depth to	Elevation (ft,	Depth to	Elevation (ft,	Depth to	Elevation (ft,	Depth to	Elevation (ft,	Depth to	Elevation (ft,	Depth to	Elevation (ft,	Depth to	Elevation
Well ID	Elevation (ft, NGVD)	Screen	Screen	Depth	Water (ft)	NGVD)	Water (ft)	NGVD)	Water (ft)	NGVD)	Water (ft)	NGVD)	Water (ft)	NGVD)	Water (ft)	NGVD)	Water (ft)	NGVD)	Water (ft)	NGVD)	Water (ft)	(ft, NGVD)
	(II, NGVD)	(ft)	(ft)	(ft)	5/2	2/2011	6/4/	2012		/2013	•	/2014	•	/2015		/2016	,	/2017		3/2018		/2019
S03M40	430.19	30	100	101.3	17.30	412.89	24.35	405.84	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
S03M41 S03M42	427.63 427.4	15 10	100 100	91.47 71.32	15.55 14.87	412.08 412.53	22.76 22.26	404.87 405.14	29.04 NM	398.59 NM	19.99 19.34	407.64 408.06	28.49 28.13	399.14 399.27	27.83 27.75	399.80 399.65	32.90 32.51	394.73 394.89	19.72 18.84	407.91 408.56	20.58 19.27	407.05 408.13
S03M42 S03M43	429.62	29	100	98.13	17.55	412.07	25.46	404.16	NM	NM	22.18	407.44	29.04	400.58	28.98	400.64	31.18	398.44	21.85	407.77	22.32	407.3
S03M44	431.53	15	100	98.65	19.42	412.11	27.58	403.95	37.21	394.32	24.06	407.47	33.34	398.19	33.03	398.50	38.05	393.48	21.46	410.07	24.32	407.21
S03M45	432.18	19	100	68.8	20.28	411.90	28.4	403.78	36.59	395.59	24.85	407.33	34.04	398.14	34.96	397.22	39.12	393.06	22.18	410	25.15	407.03
S03M46	431.14	12	100	103.6	12.02	419.12	17.14	414	19.06	412.08	16.98	414.16	18.84	412.30	17.12	414.02	19.67	411.47	16.83	414.31	16.87	414.27
S03M47 S03M48	430.89 431.05	13 13	100	100.25 99.35	9.51 9.53	421.38 421.52	18.74 19.48	412.15	18.37 24.65	412.52 406.4	14.18 13.82	416.71 417.23	20.24	410.65 414.23	19.30 31.68	411.59 399.37	18.16 23.39	412.73 407.66	15.94 16.25	414.95 414.8	15.3 15.56	415.59 415.49
S03M49	431.05	16	100	99.35 88.65	8.88	421.52	17.38	411.57	18.02	411.99	13.17	417.25	16.82 16.62	414.23	19.26	410.75	16.79	413.22	13.81	414.8	13.58	416.43
S03M50	430.07	23	100	100.65	8.89	421.18	17.25	412.82	17.23	412.84	12.35	417.72	16.65	413.42	17.39	412.68	18.31	411.76	14.51	415.56	14.5	415.57
S03M51	429.78	19	100	99.25	8.61	421.17	16.35	413.43	16.65	413.13	12.91	416.87	17.18	412.60	17.18	412.60	18.09	411.69	5	***	13.31	416.47
S03M52	430.01	25	100	93.5	10.19	419.82	22.43	407.58	26.19	403.82	17.97	412.04	25.95	404.06	25.37	404.64	26.55	403.46	18.78	411.23	18.66	411.35
S03M53	429.39	26	100	60.6	8.21	421.18	17.03	412.36	NM	NM 412.45	12.50	416.89	15.22	414.17	15.42	413.97	19.02	410.37	13.15	416.24	12.98	416.41
S03M54 S03M55	429.44 428.58	45 16	100	92.95 65.7	8.31 8.82	421.13 419.76	16.3 21.03	413.14	15.99 NM	413.45 NM	12.50 16.55	416.94 412.03	15.19	* 414.25	15.71	* 413.73	17.13	* 412.31	13.03 17.47	416.41 411.11	12.89 17.28	416.55 411.3
S03M56	427.23	13	100	100.45	13.60	413.63	21.03	406.2	NM	NM	17.33	409.90	27.42	399.81	22.59	404.64	36.75	390.48	14.89	411.11	15.2	412.03
S03M57	427.31	13	100	100	12.80	414.51	13.8	413.51	16.33	410.98	13.90	413.41	17.08	410.23	13.89	413.42	19.07	408.24	13.07	414.24	13.33	413.98
S03M58	427.45	15	100	93.68	12.42	415.03	13.34	414.11	NM	NM	13.42	414.03	17.53	409.92	13.13	414.32	17.74	409.71	12.45	415	12.75	414.7
S03M59	429.15 430.71	15	100 100	19.75	1	ned 4/25/06	Abandone 26.68			ed 4/25/06	Abandon 23.23	ed 4/25/06		ed 4/25/06 398.59		ed 4/25/06	Abandor NM	ned 4/25/06	Abandor 23.98	ned 4/25/06		ned 4/25/06
S03M60 S03M61S	430.71	10 22	35.1	98.4 35.1	18.72 13.25	411.99 414.13	18.23	404.03	NM 25.28	NM 402.1	16.87	407.48 410.51	32.12 26.59	400.79	34.92 23.87	395.79 403.51	29.58	NM 397.80	23.98 15.81	406.73 411.57	23.91 15.65	406.8 411.73
S03M61D	427.23	105	118.5	118.5	14.83	412.40	25.05	402.18	NM	NM	19.95	407.28	25.05	402.18	30.12	397.11	31.14	396.09	23.67	403.56	20.72	406.51
S03M62S	427.77	31	43.6	43.6	9.23	418.54	21.37	406.4	31.82	395.95	16.69	411.08	26.2	401.57	27.00	400.77	31.30	396.47	17.26	410.51	17.45	410.32
S03M62D	427.77	105	118.5	118.5	9.30	418.47	21.38	406.39	NM	NM	16.67	411.10	26.2	401.57	26.89	400.88	31.33	396.44	17.22	410.55	17.42	410.35
S03M63D1	429.72	200	250	240	12.38	417.34	21.45	408.27	22.05	407.67	15.77	413.95	20.19	409.53	18.89	410.83	21.62	408.10	15.42	414.3	15.53	414.19
S03M63D2 S03M63D3	430.16 430.19	250 300	270 358	268 353	21.05 34.87	409.11 395.32	27.1 28.44	403.06 401.75	31.45 36.07	398.71 394.12	22.09 22.88	408.07 407.31	27.99 29.39	402.17 400.80	25.72 25.29	404.44 404.90	28.38 36.51	401.78 393.68	23.84 18.06	406.32 412.13	24.4 16.46	405.76 413.73
S03M64D1	427.35	165	185	180	16.80	410.55	27.35	400	27.24	400.11	21.08	406.27	26.29	401.06	26.48	400.87	27.91	399.44	26.17	401.18	20.65	406.7
S03M64D2	427.44	200	220	215	20.85	406.59	28.8	398.64	29.85	397.59	21.29	406.15	29.98	397.46	29.01	398.43	29.42	398.02	26.54	400.9	21.32	406.12
S03M64D3	427.40	310	330	325	68.00	359.40	79.58	347.82	81.82	345.58	87.26	340.14	101.89	325.51	29.90	397.50	NM	NM	NM	NM	NM	NM
S03M65D	428.42	210	230	228	15.18	413.24	26.95	401.47	31.97	396.45	21.44	406.98	30.69	397.73	30.18	398.24	35.76	392.66	21.12	407.30	22.19	406.23
S03M66D1 S03M66D2	430.95 430.97	170 190	187 210	188 208.5	11.46 11.62	419.49 419.35	17.45 17.54	413.5	18.97 19.72	411.98 411.25	17.15 17.34	413.80 413.63	18.08 18.8	412.87 412.17	18.02 17.95	412.93 413.02	18.74 19.77	412.21 411.20	17.24 16.92	413.71 414.05	17.81 18	413.14 412.97
S03M67D1	427.74	145	165	163.5	9.68	418.06	21.5	406.24	31.81	395.93	16.88	410.86	26.39	401.35	27.10	400.64	31.55	396.19	17.63	410.11	17.75	409.99
S03M67D2	427.55	230	250	249	9.45	418.10	21.28	406.27	31.57	395.98	16.66	410.89	26.18	401.37	26.88	400.67	31.36	396.19	17.45	410.10	17.65	396.23
S03M68D1	429.41	165	185	182	9.51	419.90	21.92	407.49	31.32	398.09	17.25	412.16	26.09	403.32	26.82	402.59	30.42	398.99	17.56	411.85	18.05	411.36
S03M68D2	429.42	230	250	250	9.30	420.12	21.82	407.6	31.39	398.03	21.41	408.01	26.07	403.35	26.74	402.68	30.42	399.00	17.89	411.53	18.65	410.77
S03M69D1 S03M69D2	438.32 438.21	175 210	195 230	193 230	21.29 21.13	417.03 417.08	32.18 32.08	406.14	41.81 41.68	396.51 396.53	27.72 27.53	410.60 410.68	37.49 37.29	400.83 400.92	37.19 37.03	401.13 401.18	41.90 41.91	396.42 396.30	26.61 26.58	411.71 411.63	28.21 28.11	410.11 410.1
S03M70	429.93	210	200	353.5	21.10	211.00	32.00	100.10	11.00	300.30	21.00	110.00	31.20	100.02	28.52	401.10	30.30	399.63	17.23	412.70	13.79	416.14
S03M71	432.35			351.9											34.32	398.03	38.74	393.61	21.12	411.23	15.01	417.34
S03M72	428.44			348.9											27.63	400.81	25.51	402.93	23.94	404.50	20.8	407.64
S03M73D1	429.31			188.2											31.21 33.19	398.10 396.10	36.20 36.09	393.11 393.20	21.41	407.90	23.38	405.93
S03M73D2 S07M01	429.29 421.90	31	65.58	349.8 68	22.77	399.13	88.55	23.92	NM	NM	NM	NM	NM	NM	33.19 NM	396.10 NM	36.09 NM	393.20 NM	23.67 NM	405.62 NM	22.99 NM	406.3 NM
S07M01 S07M02	423.98	13	66.4	69	***	NA	69	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
S07M03	420.78	9	65.9	68	11.30	409.48	66.81	27.15	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
S07M04	422.01	20	64.2	65.5	10.34	411.67	63.3	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
S07M05	424.02	20	44.5	44.5	13.98	410.04	45.05	30.15	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM NM	NM
S07M06 S08M01	421.14 423.89	19	59	50 112.5	10.53 12.74	410.61 411.15	49.05 59.34	25.92 28.9	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM
S08M02	422.30	20	58.8	63	11.13	411.17	64.3	26.85	NM	NM	15.35	406.95	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
S08M03	422.17	7	57	55.5	11.43	410.74	55.1	27.81	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
S08M04	430.82			59.5		oned 8/09	Abando			ned 8/09		ned 8/09		ned 8/09		oned 8/09		oned 8/09		oned 8/09		oned 8/09
BF-02	NA	14.4	26.4		14.33	NA	Abandoned	Abandoned		Abandoned		Abandoned								Abandoned		
BF-03 BF-05	NA 417.10			26	10.36 8.33	NA 408.77	Abandoned Abandoned	Abandoned		Abandoned Abandoned		Abandoned				Abandoned				Abandoned		
DT-09	417.10						outed based on													льаниопец	Avanuoned	Abanuoned

^{1.} Water levels were computed based on depth to water values recorded on field sampling forms. 2. Null fields indicate that sampling and water level collection did not occur. 3. NM means Not Measured

^{*** =} Under Equipment

APPENDIX B-2 Historic Groundwater Analytical Data

Well ID	Date Sampled	Matrix	TCE	vc	CDCE	TDCE	Total DCE	CLBZ	AS	MN
	MCL or PRO		5	2	70	100		100	10	314
BF-3 BF-3	07/11/2008 05/21/2009	GW GW	1.1	1 U 1 U	1 U	1 U	1 U 1 U	0.42 J 1 U	6 U 3 U	0.7 J 2.3 J
DD-1	04/02/2002	GW	1.5	2 U	1 0	1 0	1 U	1 U	10 U	4 B
DD-1	07/11/2008	GW	5.4	1 U	1.7	1 U	1.7	0.34 J	6 U	7.5
DD-1 DD-1	05/20/2009 05/11/2010	GW GW	7.6 3.6 K	1 U 1 UJ	2.1 0.66 J	1 U 1 UJ	2.1 0.66 J	1 U 1 UJ	1 J 3 U	5.7 U 5.6 U
DD-1 DD-1	05/03/2011	GW	1.3	0.75 U	0.66 J 0.75 U	0.75 U	0.75 U	0.75 U	2 U	3.7 U
DD-1	6/12/2012	GW	0.71 J	0.75 U			0.75 U	1.6	2 U	3.7 U
DD-1	5/15/2013	GW	4.1 J	0.33 UJ			0.33 UJ	0.33 UJ	Not Sa	
DD-1 DD-1	5/27/2014 5/19/2015	GW GW	0.87 J 1.2	0.75 U 0.75 U			0.75 U 0.75 U	0.75 U 0.75 U	2 U 1 J	8.4 8.9
DD-1	5/16/2016	GW	8.1	0.75 U			2.88	0.75 U	2 U	45
DD-1	12/15/2017	GW	0.89 J	1 U	1 U	1 U	1 U	1 U	1 U	15 U
DD-1 DD-1	5/31/2018 5/16/2019	GW GW	2.5 0.79 J	1 U 1 U	0.8 J 1 U	1 U 1 U	0.8 J 1 U	1 U 1 U	3 U 3 U	15 U
DD-1	7/1/2020	GW	0.99 J	1 U	1 U	NS	NA NA	1 U	3 U	2.6 J
DD-2	04/04/2002	GW	1.6	2 U			1.3	1 U	10 U	2.3 B
DD-2 DD-2	01/12/2004 05/06/2004	GW GW	1.1 0.59 J	2 U 1 U	0.47 J	1 U	1.7 0.47 J	1 U 1 U	10 UL 10 UL	64 22.2 J
DD-2 DD-2	07/06/2004	GW	0.55 J	2 U	0.47 8	1 0	0.47 J	1 U	10 UL	16.6
DD-2	08/11/2004	GW	1.5	2 U			1.6	1 U	10 U	135
DD-2	10/08/2004	GW	1.5	2 U			1.4	1 U	10 UL	12.2 B
DD-2 DD-2	11/23/2004 07/10/2008	GW GW	0.86 J 0.76 J	2 U 1 U	0.33 J	1 U	0.42 J 0.33 J	1 U 0.53 J	10 U 6 U	21.9 27.5
DD-2	05/20/2009	GW	1 U	1 U	1 U	1 U	1 U	1 U	3 U	38
DD-2D	04/04/2002	GW	2.2	2 U			0.94 J	1 U	2.1 B	1.9 B
DD-2D DD-2D	01/12/2004 05/06/2004	GW GW	4.1 2.2	2 U	1.4	1 U	2.2	1 U	10 UL 10 UL	2.9 B 3.8 J
DD-2D DD-2D	05/06/2004	GW	1.7	1 U 2 U	1.4	1 U	1.4	1 U 1 U	10 UL 10 U	3.8 J 1.3 B
DD-2D	08/11/2004	GW	3.2	2 U			2.2	1 U	10 U	2.6 B
DD-2D	10/08/2004	GW	1	2 U			0.54 J	1 U	10 UL	0.69 B
DD-2D DD-2D	11/23/2004 07/09/2008	GW GW	0.42 J 2.2	2 U 1 U	1.4	1 U	1 U 1.4	1 U 1 U	10 U 6 U	2.2 B 3.1 J
DD-2D	05/26/2009	GW	2.2	1 U	1.2	1 U	1.2	1 U	3 U	5.7 U
DD-2S	04/04/2002	GW	1.4	2 U	0.51.7	4 **	0.74 J	1 U	10 U	4.5 B
DD-2S DD-2S	07/10/2008 05/20/2009	GW GW	0.72 J 1.1	1 U 1 U	0.51 J 0.56 J	1 U 1 U	0.51 J 0.56 J	0.89 J 1 U	6 U 3 U	97.3 31
DD-3	04/03/2002	GW	0.41 J	2 U	0.80 8	10	1 U	1 U	10 U	3.4 B
DD-3	07/10/2008	GW	1 U	1 U	1 U	1 U	1 U	1 U	6 U	20.9
DD-3 DD-3D	05/20/2009 04/04/2002	GW GW	1 U 1 U	1 U 2 U	1 U	1 U	1 U 1 U	1 U 1 U	2 J 10 U	73 0.5 B
DD-3D DD-3D	07/10/2008	GW	0.93 J	1 U	1 U	1 U	1 U	0.83 J	6 U	0.4 J
DD-3D	05/20/2009	GW	0.68 J	1 U	1 U	1 U	1 U	1 U	3 U	5.7 U
DD-3S	04/03/2002	GW	0.42 J	2 U	1 77	1 17	1 U	1 U	10 U	26.7
DD-3S DD-3S	07/10/2008 05/20/2009	GW GW	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	6 U 3 U	24.3
DD-4	04/02/2002	GW	1 U	2 U			1 U	1 U	10 U	4 B
DD-4	07/08/2008	GW	1 U	1 U	1 U	1 U	1 U	1 U	6 U	3.9 J
DD-4 DD-6D	05/22/2009 04/03/2002	GW GW	1 U 1.7	1 U 2 U	1 U	1 U	1 U 1 U	1 U 1 U	3 U 10 U	34 8.8 B
DD-6D	07/10/2008	GW	1.4	1 U	1 U	1 U	1 U	0.25 J	6 U	11.1
DD-6D	05/20/2009	GW	1	1 U	1 U	1 U	1 U	1 U	3 U	8
DD-7D DD-7D	04/05/2002 07/09/2008	GW GW	7.5 11.8	2 U 1 U	0.93 J	1 U	0.64 J 0.93 J	1 U 1 U	10 U 6 U	0.59 B 4.1 J
DD-7D DD-7D	05/26/2009	GW	11.9	1 U	0.88 J	1 U	0.88 J	1 U	3 U	11
DD-7D	05/12/2010	GW	12.4	1 U	0.87 J	1 U	0.87 J	1 U	3 U	4.5 J
DD-7D	05/03/2011	GW	10.1	0.75 U	0.84 J	0.75 U	0.84 J	0.75 U	2 U	17
DD-7D DD-7D	6/12/2012 5/14/2013	GW GW	5.3 9.1 J	0.75 U 0.33 U			0.75 U 0.69 J	0.75 U 0.33 U	2 U Not Sa	3.7 U impled
DD-7D	5/27/2014	GW	7.1	0.75 U			0.73 J	0.75 U	2 U	7.6
DD-7D	5/12/2015	GW	5.3	0.75 U			0.66	0.75 U	2 U	16
DD-7D DD-7D	5/16/2016 12/15/2017	GW GW	6.8	0.75 U 1 U	0.67 J	1 U	0.79 J 0.67 J	0.75 U 1 U	2 U 1 U	3.4 J 15 U
DD-7D	5/30/2018	GW	3.1	1 U	0.61 J	1 U	0.61 J	1 U	3 U	15 U
DD-7D	5/16/2019	GW	2.1	1 U	1 U	1 U	1 U	1 U	3 U	15 U
DD-7D S02M04	7/1/2020 02/02/2001	GW GW	2.5 0.3 U	1 U 0.4 U	1 U	NS	0.3 U	1 U 0.3 U	3 U 10 U	15 U 4.2 B
S02M04	07/15/2008	GW	1 U	1 U	1 U	1 U	1 U	1 U	6 U	1.3 J
S03M01	04/01/2002	GW	7.6	2 U			1 U	1 U	10 U	2.3 B
S03M01 S03M01	07/10/2008 05/27/2009	GW GW	10.7 8.8	1 U 1 U	2.3 1.7	1 U 1 U	2.3 1.7	1 U 1 U	6 U 3 U	614 190
S03M01	05/21/2009	GW	0.0 1 UJ	1 UJ	4.7 K	1 UJ	4.7 K	1 UJ	3 U	780
S03M01	05/03/2011	GW	7.1	0.75 U	1.5	0.75 U	1.5	0.75 U	2 U	710
S03M01	6/8/2012 5/14/2013	GW GW	0.81 J	0.75 U			0.75 U 0.33 UJ	0.75 U	2 U	3.7 U
S03M01 S03M01	5/14/2013 5/23/2014	GW	0.47 J 0.77 J	0.33 UJ 0.75 U			0.33 UJ 0.57 J	0.33 UJ 0.75 U	Not Sa 2 U	ampled 39
S03M01	5/19/2015	GW	0.69 J	0.75 U			0.35	0.75 U	2 U	25
S03M01	5/18/2016	GW	0.80 J	0.75 U	0.43 J	0.75 U	0.43	0.75 U	2 U	13
S03M01 S03M01	12/14/2017 5/30/2018	GW GW	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	7.8 3 U	454 15 U
S03M01	5/16/2019	GW	1 U	1 U	1 U	1 U	1 U	1 U	3 U	15 U
S03M01	7/1/2020	GW	1 U	1 U	1 U	NS	NA	1 U	3 U	2.4 J
S03M02 S03M02	04/03/2002 07/09/2008	GW GW	16 6.4	2 U 1 U	1.6	1 U	2.8 1.6	1 U 1 U	10 U 6 U	10.6 B 2.2 J
S03M02 S03M02	05/27/2009	GW	4.7	1 U	1.6	1 U	1.6	1 U	3 U	2.2 J 2.8 J
S03M02	05/11/2010	GW	9.4 J	1 UJ	1.8 J	1 UJ	1.8 J	1 UJ	3 U	5.6 U
S03M02	05/03/2011	GW	2.1	0.75 U	0.35 J	0.75 U	0.35 J	0.75 U	2 U	3.3 J
S03M02 S03M02	6/12/2012 5/8/2013	GW GW	2.1 1.8	0.75 U 0.33 U			0.92 J 0.33 UJ	0.75 U 0.33 U	2 U Not Sa	3.7 U impled
S03M02	5/28/2014	GW	0.75 U	0.75 U			0.75 U	0.75 U	2 U	3 Ј
S03M02	5/12/2015	GW	1.3	0.75 U			1.4	0.75 U	2 U	5.4 J
S03M02	5/18/2016	GW	1.3	0.75 U	1 0.59 J	0.75 U	1 0.59 J	0.75 U	2 U	2.2 J
S03M02 S03M02	12/8/2017 5/22/2018	GW GW	1.1 0.41 J	1 U 1 U	0.59 J 1 U	1 U 1 U	0.59 J 1 U	1 U 1 U	1 U 3 U	15 U 15 U
S03M02	5/10/2019	GW	0.54 J	1 U	1 U	1 U	1 U	1 U	3 U	6.8 J
S03M02	6/29/2020	GW	1 U	1 U	1 U	NS	NA	1 U	3 U	13.9 J

Well ID	Date Sampled	Matrix	TCE	VC	CDCE	TDCE	Total DCE	CLBZ	AS	MN
	MCL or PRO	- (μg /L)	5	2	70	100		100	10	314
S03M03	04/08/2002	GW	4.5 J	450			440	1300	20.5	1020
S03M03 S03M03	01/13/2004 05/06/2004	GW GW	100 U 31 J	85 J 52	160	31 U	93 J 160	2000 1000	38.1 40.2	740 2220 J
S03M03	07/08/2004	GW	2.8 J	20 U			66	300	23.2	2530
S03M03	08/17/2004	GW	11 J	91 J			300	1100	51.8	2940
S03M03 S03M03	09/24/2004 11/12/2004	GW GW	6.4 4 J	11 17 J			110 74	110 270	21.1	2730 879
S03M03	04/19/2005	GW	4.2 J	5 U	4.3 J	5 U	4.3 J	5 U	2 UL	85
S03M03	09/09/2005	GW	50 U	93	230	50 U	230	1100	36.8	1090
S03M03 S03M03	06/22/2006 07/09/2008	GW GW	5.7 J 5.5	90 8.6	120 12.1	20 U 1.3	120 13.4	1500 1230	7.3	704 448
S03M03	05/27/2009	GW	2.2	7.2	8.9	1.3	10.2	793	12	440
S03M03	05/13/2010	GW	5 U	3.6 J	9	5 U	9	1480	9	430
S03M03 S03M03	6/11/2012 5/8/2013	GW GW	3.6 0.92 J	0.43 J 3.5			3.3 9.5 J	45.5 1060	2.7 J	140 ampled
S03M03 S03M03	5/28/2014	GW	7.5 U	7.5 U			4.8 J	1310	13	320
S03M03	5/15/2015	GW	0.48 J	2.1			4.69	1400	13	310
S03M03	5/13/2016	GW	0.92 J	1.5	3.2	0.62	3.82	1280	11	250
S03M03 S03M03	12/8/2017 5/22/2018	GW GW	0.55 J 2.5 U	0.71 J 2.5 U	5.5 4.3	0.63 J 2.5 U	6.13 4.3	863 1060	30.5	393 292
S03M03	5/10/2019	GW	5 U	5 U	5.3	5 U	5.3	824	19.2	257
S03M03	6/29/2020	GW	2 U	1.7 J	5.8	NS	NA	1020	11.8	231
S03M04 S03M04	04/02/2002 07/08/2008	GW GW	1.4	2 U 1 U	0.56 J	1 U	1.4 0.56 J	1 U 1 U	10 U 6 U	5.5 B 22.6
S03M04	05/19/2009	GW	2.2	1 U	1 U	1 U	1 U	1 U	3 U	5.3 J
S03M04	05/14/2010	GW	1.9	1 U	1 U	1 U	1 U	1 U	3 U	4.2 J
S03M04 S03M05	05/03/2011 04/01/2002	GW GW	0.86 J 1.3	0.75 U 2 U	0.75 U	0.75 U	0.75 U 1 U	0.75 U 1 U	2 U 10 U	16 0.28 B
S03M05 S03M05	04/01/2002	GW	2.9	2 U	1 U	1 U	1 U	1 U	6 U	0.28 B 2.9 J
S03M05	05/27/2009	GW	2.9	1 U	1 U	1 U	1 U	1 U	3 U	1.9 J
S03M06	04/03/2002	GW	1 U	2 U			1 U	1 U	10 U	1.7 B
S03M06 S03M06	07/09/2008 05/27/2009	GW GW	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	6 U 1.4 J	0.9 J 2.3 J
S03M07	04/05/2002	GW	50 U	950	1 0	10	1300	740	16.9	147
S03M07	07/09/2008	GW	0.61 J	6.3	5.2	2.2	7.4	1300	23.7	522
S03M07	05/27/2009	GW	1 U	2.4	1.8	1.7	3.5	2680	32	480
S03M07 S03M07	05/13/2010 05/03/2011	GW GW	1 U 0.75 UJ	4.8 1.6 J	3.5 1 J	1.2 1.4 J	4.7 2.4 J	1800 2300 J	28 28	510 400
S03M07	6/11/2012	GW	0.75 J	2.9			4.4	0.75 UJ	21	280
S03M07	5/8/2013	GW	0.43 J	3.2			6.4 J	1050		ampled
S03M07 S03M07	5/28/2014 5/15/2015	GW GW	3.8 U 0.4 J	3.8 U 1.3			3.8 U 2.6	1620 J 1280	24	280 290
S03M07 S03M07	5/13/2016	GW	0.4 J	0.8 J	2	0.93 J	2.93	1850	19	230
S03M07	12/8/2017	GW	5 U	5 U	5 U	5 U	5 U	986	28.3	255
S03M07	5/22/2018	GW	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	999	19.1	209
S03M07 S03M07	5/10/2019 6/29/2020	GW GW	5 U 2 U	5 U 2 U	5 U 2 U	5 U NS	5 U NA	1080 961	23.8 19.8	187 192
S03M08	04/02/2002	GW	1 U	2 U			1 U	1 U	10 U	65
S03M08	07/08/2008	GW	1 U	1 U	1 U	1 U	1 U	1 U	6 U	77.6
S03M08 S03M10	05/19/2009 05/13/2010	GW GW	1 U 1 U	1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	3 U 4.9	3.6 J 20
S03M10	05/03/2011	GW	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	3.6	16
S03M13	04/03/2002	GW	1.2	2 U			1.3	1 U	10 U	8.5 B
S03M13 S03M13	07/15/2008 05/26/2009	GW GW	0.58 J 1 U	1 U 1 U	0.84 J 0.51 J	1 U 1 U	0.84 J 0.51 J	1 U 1 U	6 U 1.9 J	3.7 J 5 J
S03M13	05/11/2010	GW	1 UJ	1 UJ	0.51 J 0.42 J	1 UJ	0.51 J 0.42 J	1 UJ	1.9 J	4.9 J
S03M13	05/05/2011	GW	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	1.5 J	4.2 J
S03M13	6/11/2012	GW	0.75 U	0.75 U			0.42 J	0.75 U	1.4 J	5.9
S03M13 S03M13	5/15/2013 5/30/2014	GW GW	0.33 U 0.75 UJ	0.33 U 0.75 UJ			0.33 U 0.75 UJ	0.33 U 0.75 UJ	1.6 J	ampled 5.5 J
S03M13	5/13/2015	GW	0.75 U	0.75 U			0.75 U	0.75 U	1.3 J	7.4
S03M13	5/17/2016	GW	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	1.4 J	5.8
S03M13	12/13/2017	GW	1 U	1 U	1 U	1 U	1 U	1 U	6.5	15 U
S03M13 S03M13	6/1/2018 5/14/2019	GW GW	1 U 1 U	1 U 1 U	1 U 0.57 J	1 U 1 U	1 U 0.57 J	1 U 1 U	3 U 7.7	15 U 6.9 J
S03M13	6/30/2020	GW	1 U	1 U	0.55 J	NS	NA	1 U	7.1	6.9 J
S03M14 S03M14	07/12/2001 04/04/2002	GW GW	2 2.5 J	1 6 U	2	1 U	2 2.6 J	48 110	51 90.8	187 216
S03M14 S03M14	04/04/2002	GW	2.5 J 1.5	0.87 J	2.8	0.45 J	3.25	13.5	90.8 47.4	216
S03M14	05/19/2009	GW	7.3	1.9	10.6	0.87 J	11.47	67.3	21	280
S03M14	05/14/2010	GW	4.6	1.6	6.2	1	7.2	111	26	270
S03M14 S03M14	05/04/2011 6/11/2012	GW GW	2.8	1.6	8.2	1.9 J	10.1 4.3	95 0.75 U	18 34	190 210
S03M14	5/9/2013	GW	0.33 U	2.3 J			9.5 J	53.9		ampled
S03M14	6/3/2014	GW	0.95 J	1.1			5.4 J	41.5	26	150
S03M14 S03M14	5/15/2015 5/13/2016	GW GW	375 U 0.66 J	0.75 U 0.44 J	1.3	0.41 J	0.92 1.71	4.5 22	25 19	120 120
S03M14 S03M14	12/8/2017	GW	0.66 J 0.28 J	0.44 J 1.1	3	1.2	4.2	51.4	19 54	484
S03M14	5/23/2018	GW	1 U	1 U	1.7	0.72 J	2.42	16.8	50.9	296
S03M14	5/7/2019	GW	1 U	1.2	3.9	1.3	5.2	57	63	317
S03M14 S03M15	6/24/2020 04/04/2002	GW GW	1 U 10 U	1 U 160	0.72 J	NS	NA 340	1.6 35	20.2 14.9	123 135
S03M15	07/15/2008	GW	10 U	1.9	0.71 J	3.7	4.41	22	9.9	104
S03M15	05/27/2009	GW	1 U	62.5	52.3	6.5	58.8	24.6	14	51
S03M15	05/11/2010	GW	1 UJ	7 J	3 J	4.4 J	7.4 J	22.1 J	13	110
S03M15 S03M15	05/05/2011 6/11/2012	GW GW	1.2 0.75 U	252	323	18.8	341.8 8.7	101 12.8	17 8.6	90
S03M15	5/15/2013	GW	0.33 U	8.3			20.4	17.6		ampled
S03M15	5/30/2014	GW	0.75 UJ	161 J			303 J	60.4 J	16	87
S03M15	5/13/2015 5/17/2016	GW	0.41 J	192	100	10.0	271.7	48.5	16	100
S03M15	5/17/2016 12/7/2017	GW GW	0.75 U 1 U	1.1	1.2	10.3 0.62 J	132.3 1.82	43.8 78.6	15 18.9	75 57.5
S03M15			+ -							
S03M15 S03M15	6/1/2018	GW	1 U	2.5	1.4	0.52 J	1.92	71.4	17.3	54.3
		GW GW	1 U 1 U 1 U	2.5 1.6 1.7	1.4 1.1 1	0.52 J 1 U NS	1.92 1.1 NA	71.4 51.8 28	17.3 16.8 12.3	54.3 39.1 28.5

Well ID	Date Sampled	Matrix	TCE	vc	CDCE	TDCE	Total DCE	CLBZ	AS	MN
COSMIC	MCL or PRO		5	2	70	100		100	10	314
S03M16 S03M16	07/16/2001 08/13/2004	GW GW	3	5.3	7	1 U	7 5.3	0.8 J 1.1	17.2 B 21.5	75.2 466
S03M16	09/23/2004	GW	2.3	1.3 J			2.6	0.4 J	10 U	1400
S03M16	11/11/2004	GW	3.2	3.4			5.9	0.42 J	38.9	916
S03M16	04/20/2005	GW	4.3 J	4.2 J	9.8	5 U	9.8	5 U	2 UL	755
S03M16 S03M16	09/07/2005 06/20/2006	GW GW	19	5 12	72 130	5 U 1 U	72 130	5.5 3.5	4.9 10.7 K	408 237
S03M16	07/08/2008	GW	3.5	9.6	31.5	0.24 J	31.74	3	2.2 J	284
S03M16	05/19/2009	GW	2.4	2.7	8.3	1 U	8.3	1.3	7.2	210
S03M16	05/12/2010	GW	1.5	2.7	6.7	1 U	6.7	2.1 1.2	8.1	190
S03M16 S03M16	05/04/2011 6/11/2012	GW GW	0.82 J	1.8 6.4	3.7	0.75 U	3.7	3.4	6.1 4.2	180 190
S03M16	5/10/2013	GW	0.8 J	5.1			7.02 J	0.33 U		mpled
S03M16	6/2/2014	GW	0.87 J	1.8 J			3.94 J	0.48 J	4.9	130
S03M16 S03M16	5/15/2015 5/12/2016	GW GW	0.64 J 1.7	2.8	4.4	0.75 U	5.46 4.4	0.98 J 0.57 J	8.1	160 180
S03M16 S03M16	12/13/2017	GW	1.7 1 U	1.8	4.4	1 U	4.4	0.92 J	6.1	411
S03M16	5/23/2018	GW	4.4	1 U	3.7	1 U	3.7	1 U	3 U	182
S03M16	5/9/2019	GW	2.1	1 U	2.6	1 U	2.6	1 U	3 U	134
S03M16 S03M17	6/23/2020 06/29/2001	GW GW	1.2 810	1 U 140	2.1 380	NS 6	NA 386	1 U 430	2.1 J 9.2 B	297 10.7 B
S03M17 S03M17	04/08/2002	GW	41 J	680	500	0	3800	2600	9.2 B 18.4	10.7 B
S03M17	01/13/2004	GW	40 U	60 J			33 J	670	1.8 L	204
S03M17	05/07/2004	GW	13	5.9 J	29	8.5 U	29	280	10 U	1320 J
S03M17	07/07/2004	GW	49	3.5 J			160	110	5.2 L	1110
S03M17 S03M17	08/16/2004 09/23/2004	GW GW	92 180	40 U 29 J			310 550	240 690	3.8 B 10 U	1290 4180
S03M17 S03M17	11/11/2004	GW	250	70 U			410	1200	2.6 B	7180
S03M17	04/20/2005	GW	300	35 J	440	50 U	440	1000	25.3	1010
S03M17	09/06/2005	GW	48 J	100 J	1500	120 U	1500	2700	25.8	799
S03M17	06/20/2006	GW	9.6	130	230	8.7	238.7	910	21.6	437
S03M17 S03M17	07/09/2008 05/26/2009	GW GW	7.4 6	38.1 19.3	145 157	8.4	153.4 161	1560 608	14.4 7.9	386 230
S03M17	05/12/2010	GW	5 U	43.4	226	5.2	231.2	296	8	200
S03M17	05/04/2011	GW	15.6	13	49.1	2 J	51.1	257	10	510
S03M17	6/8/2012	GW	1.7	16.6			86.4	378	3.5	180
S03M17 S03M17	5/10/2013 6/2/2014	GW GW	1.7 U 18.8 U	172 268			261.1 114.8 J	1040 1490	Not Sa 6.2	mpled 220
S03M17 S03M17	5/15/2015	GW	1.6	130			241.3	744	7.1	210
S03M17	5/12/2016	GW	1.9	121	199	8.2	207.2	872	5.9	150
S03M17	12/12/2017	GW	5 U	115	54.3	7.5	61.8	1580	8.6	244
S03M17	5/24/2018	GW	5 U	5 U	5 U	4.4 J	4.4 J	932	8.6	785
S03M17 S03M17	5/8/2019 6/24/2020	GW GW	5 U 4 U	6.2	5 U 43.7	3.6 J NS	3.6 J NA	899 935	33.2 4.5	652 684
S03M18	07/06/2001	GW	5000	860	2600	100 U	2600	8300	19.9	322
S03M18	04/05/2002	GW	300 U	310 J			970	8000	32.4	309
S03M18	01/13/2004	GW	250 U	340 J			500	4700	14	369
S03M18 S03M18	05/07/2004 07/07/2004	GW GW	900	92 200 U	840	9.9 J	849.9 230	1200 2000	11 27.5	2560 J 3830
S03M18	08/16/2004	GW	220 J	500 U			580	4800	61.1	2220
S03M18	09/24/2004	GW	110	50 U			110	540	3.1 B	3620
S03M18	11/12/2004	GW	76	100 U			100	1100	4.6 K	3920
S03M18 S03M18	04/20/2005 09/06/2005	GW GW	520 1100	250 U 190 J	430 850	250 U 250 U	430 850	4400 5400	26.4 19.5	3660 1700
S03M18	06/23/2006	GW	1600	300	1000	50 U	1000	5100	24.1	1120
S03M18	07/09/2008	GW	324	188	934	13.9	947.9	3610	16.1	1100
S03M18	05/27/2009	GW	77.3	48.6	398	9.4	407.4	5280	14	1800
S03M18	05/12/2010	GW GW	58.3 5.1	26.4	630 120	11.7	641.7	4000 J 2810	14 16	1100 1000
S03M18 S03M18	05/04/2011 6/8/2012	GW	38.8	75.3 25.4	120	6.1 J	126.1 388 UL	3770	13	630
S03M18	5/10/2013	GW	6.6	39.2			256	1510	Not Sa	
S03M18	5/28/2014	GW	53.2	20.1			413 J	3310	17	800
S03M18	5/19/2015	GW	16.4	31.7		II	421.8	3410	20	630
S03M18 S03M18	5/10/2016 12/7/2017	GW GW	7.6 J 23.8	3.7 J 24.2	44.5 227	7.5 U 3.4	44.5 230.4	1170 3030	13 47.8	190 274
S03M18	5/24/2018	GW	20 U	24.6	120	20 U	120	2530	64.8	213
S03M18	5/8/2019	GW	13.6 J	26.4	198	20 U	198	2500	47.9	354
S03M18	6/24/2020	GW	50.3	11.5	224	NS	NA	1450	41.2	194
S03M19 S03M19	07/10/2001 07/08/2008	GW GW	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	5.8 B 6 U	40.7 8.8
S03M19	05/19/2009	GW	1 U	1 U	1 U	1 U	1 U	1 U	3 U	4.1 J
S03M19	05/13/2010	GW	1 U	1 U	1 U	1 U	1 U	1 U	3 U	12
S03M20	07/05/2001	GW	0.4 J	1 U	1 U	1 U	1 U	1 U	10 U	27.9
S03M20 S03M20	08/16/2004 04/21/2005	GW GW	0.43 J 10 UJ	2 U 10 UJ	10 UJ	10 UJ	1 U 10 UJ	1 U 10 UJ	10 U 22.2	41.1 B 36.7
S03M20 S03M20	04/21/2005	GW	5 U	10 UJ 5 U	10 UJ 5 U	5 U	10 UJ 5 U	10 UJ 5 U	25.3	26.8
S03M20	06/22/2006	GW	0.32 J	2 U	1 U	1 U	1 U	1 U	30	13.2
S03M20	07/08/2008	GW	0.55 J	1 U	1 U	1 U	1 U	1 U	1.1 J	7.8
S03M20	05/19/2009	GW	1 U	1 U	1 U	1 U	1 U	1 U	3.3	12
S03M20 S03M20	05/12/2010 05/02/2011	GW GW	1 U 0.75 U	1 U 0.75 U	1 U 0.75 U	1 U 0.75 U	1 U 0.75 U	1 U 0.75 U	1.2 J 2 U	2.7 J 30
S03M20 S03M20	6/6/2012	GW	0.75 U	0.75 U	0.10	5.10 0	0.75 U	0.75 U	1.2 J	7.2
S03M20	5/8/2013	GW	0.33 U	0.33 U			0.33 U	0.33 U		mpled
S03M20	6/3/2014	GW	0.75 U	0.75 U			0.75 UJ	0.75 U	2 U	82
S03M20	5/15/2015	GW	0.75 U	0.75 U	0.75 11	0.75 11	0.75 U	0.75 U	2.1 J	230
S03M20 S03M20	5/13/2016 12/5/2017	GW GW	0.75 U 1 U	0.75 U 1 U	0.75 U 1 U	0.75 U 1 U	0.75 U 1 U	0.75 U 1 U	2 U 1.5	120 68.7
S03M20	5/25/2018	GW	1 U	1 U	1 U	1 U	1 U	1 U	3 U	15 U
S03M20	5/8/2019	GW	1 U	1 U	1 U	1 U	1 U	1 U	3 U	50.5
S03M20	6/24/2020	GW	1 U	1 U	1 U	NS TO II	NA To II	1 U	3 U	55.9
S03M21 S03M21	07/11/2001 04/05/2002	GW GW	2400 190	50 U 10 U	50 U	50 U	50 U 5 U	31 J 5 U	10 U 2.3 B	7.1 B 2 B
S03M21 S03M21	04/05/2002	GW	2.1	2 U			1 U	1 U	2.3 B 10 UL	2 B 2.1 B
S03M21	05/06/2004	GW	3.6	1 U	1 U	1 U	1 U	1 U	10 UL	890 J
S03M21	07/07/2004	GW	1.4 J	10 U			5 U	5 U	4.2 L	2340
S03M21	07/11/2008	GW	4.1	1 U	1 U	1 U	1 U	0.29 J	6 U	1.2 J
S03M21 S03M21	05/26/2009 05/13/2010	GW GW	7.6	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	3 U 3 U	5.7 U 5.6 U
S03M21 S03M21	05/04/2011	GW	0.7 J	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	2 U	3.7 U
DUDIVIZI										
S03M21	6/12/2012	GW	2.9	0.75 U			0.75 U	0.75 U	2 U	1.2 J

Well ID	Date Sampled	Matrix	TCE	VC	CDCE	TDCE	Total DCE	CLBZ	AS	MN
	MCL or PRO		5	2	70	100		100	10	314
S03M21	5/28/2014 5/15/2015	GW	0.75 U	0.75 U			0.75 U	0.75 U	2 U	15
S03M21 S03M21	5/12/2016	GW GW	0.66 J 0.85 J	0.75 U 0.75 U	0.59 J	0.75 U	0.75 U 0.59	0.75 U 0.75 U	2 U 2 U	13 5.8
S03M21	12/14/2017	GW	0.42 J	1 U	1 U	1 U	1 U	1 U	1.1	47.1
S03M21	5/25/2018	GW	1 U	1 U	1 U	1 U	1 U	1 U	3 U	15 U
S03M21	5/14/2019	GW	1 U	1 U	1 U	1 U	1 U	1 U	3 U	1.4 J
S03M21	6/29/2020	GW	1 U	1 U	1 U	NS	NA 0.44	1 U	3 U	21.3
S03M22 S03M22	07/06/2001 08/13/2004	GW GW	2 15 J	95 220	340	6	346 910	3 B 14 J	7.5 B 10 U	915 971
S03M22	09/22/2004	GW	3	5 U			85	1.2 J	2.5 B	1710
S03M22	11/11/2004	GW	6.3	12			150	5 U	10 U	1520
S03M22	04/19/2005	GW	19	8 J	300	5.3 J	305.3	10 U	2 UL	665
S03M22	09/07/2005	GW	3.7 J	5 U	32	5 U	32	5 U	2.1 U	54
S03M22	07/08/2008	GW GW	3.7 1.7	0.35 J 1 U	12.4 14.1	0.43 J 1 U	12.83 14.1	1 U 1 U	6 U 3 U	22.6 130
S03M22 S03M22	05/19/2009 05/14/2010	GW	2.6	1 U	11	1 U	11	1 U	3 U	31
S03M22	05/05/2011	GW	2.6	0.75 U	4	0.75 U	4	0.75 U	2 U	8.5
S03M22	6/6/2012	GW	3.6	0.75 U			9.32	0.75 U	2 U	1.5
S03M22	5/8/2013	GW	1.7	0.33 U			17.69 J	0.33 U		ampled
S03M22	5/27/2014	GW	1	0.75 U			6.4	0.75 U	2 U	91
S03M22 S03M22	5/14/2015 5/11/2016	GW GW	1.6	0.75 U 0.75 U	4.6	0.75 U	13.81 4.6	0.75 U 0.75 U	1.2 J 2 U	160 24
S03M22	12/5/2017	GW	0.98 J	1 U	2.3	1 U	2.3	1 U	1.7	135
S03M22	5/21/2018	GW	0.75 J	1 U	2.9	1 U	2.9	1 U	3 U	72.3
S03M22	5/7/2019	GW	1 U	1 U	2.2	1 U	2.2	1 U	1.3 J	121
S03M22	6/25/2020	GW	1.2	1 U	4.7	NS	NA	1 U	3 U	52
S03M41	06/20/2006	GW	4500	230	2100	50 U	2100	3200	25.8	413
S03M41 S03M41	07/09/2008 05/26/2009	GW GW	1400 984	194 228	2280 14.8 J	26.6 39.5	2306.6 54.3	1490 4330	10.8	377 350
S03M41 S03M41	05/26/2009	GW	38.8	13.5 J	14.8 J 205	39.5 25 U	205	4330 635	3.2	350 490
S03M41	05/03/2011	GW	159	50.2	262	8.9 J	270.9	330	2.7 J	430
S03M41	6/11/2012	GW	512	97			1034.4	232	4.3	430
S03M41	5/15/2013	GW	1330 J	98.7 J			3009.9 J	586 J		ampled
S03M41	5/28/2014	GW	287	69			700.9	684	8.3	340
S03M41 S03M41	5/20/2015 5/10/2016	GW GW	482 65.4	70.2 34.9	432	5.6 J	822.3	775 909	7 12	320 210
S03M41 S03M41	12/7/2017	GW	22.1	34.9	299	5.8	437.6 304.8	1170	17.2	209
S03M41	5/24/2018	GW	24.3	413	527	7.2	534.2	976	14.6	220
S03M41	5/8/2019	GW	4.6	238	144	4.7	148.7	504	5.5	238
S03M41	6/25/2020	GW	1.7 J	1430	2220	NS	NA	612	8.1	215
S03M44	01/12/2004	GW	12	0.58 J			22	1 U	2 L	56.2
S03M44 S03M44	04/02/2004	GW GW	22 15	1.6 J	42	2 U	42 40	0.83 J 0.67 J	10 U 10 U	35.5 J
S03M44 S03M44	06/01/2004 08/12/2004	GW	11	1.7 J 2 U			12	1 U	10 U	19.5 8.5 B
S03M44	09/03/2004	GW	18	2 U			30	1 U	10 UL	3.7 B
S03M44	10/21/2004	GW	42	2.1 J			140	1.8 J	10 U	40.4
S03M44	04/20/2005	GW	53	5 U	150	5 U	150	5 U	2 UL	5.8
S03M44	09/08/2005	GW	53	31	280	12 U	280	25	2.1 U	549
S03M44	06/23/2006	GW	81	8.8	240	1.8	241.8	17	3 U	84.6
S03M44 S03M44	07/09/2008 05/21/2009	GW GW	28.9 28	13.5 2.6	151 90.5	2.3 0.97 J	153.3 91.47	15.4 5	6 U 3 U	159 51
S03M44	05/11/2010	GW	16.2 J	1 UJ	39.2 J	1 UJ	39.2 J	1 UJ	3 U	35
S03M44	05/04/2011	GW	14.5	0.75 U	20.2	0.75 U	20.2	0.34 J	2 U	26
S03M44	6/8/2012	GW	8.3	0.64 J			57	0.75 U	2 U	190
S03M44	5/9/2013	GW	32.7	18.6			189.8	58.6		ampled
S03M44	5/30/2014	GW	1.7 J	0.75 UJ 2.2			8.3 J	0.75 UJ	1.6 J	320
S03M44 S03M44	5/13/2015 5/12/2016	GW GW	10.2	2.00	68	1.6	77.7 69.6	12.1 0.75 U	1.1 J 2 U	430 59
S03M44	12/7/2017	GW	4.7	1 U	26.5	0.68 J	27.18	2.2	3	1610
S03M44	6/1/2018	GW	1.1	1 U	5.3	1 U	5.3	1 U	3 U	2040
S03M44	5/16/2019	GW	0.92 J	1 U	3.6	1 U	3.6	1 U	3 U	29
S03M44	6/30/2020	GW	10.00	1 U	60.2	NS	NA 10	11.7	1.1 J	113
S03M45 S03M45	01/12/2004	GW GW	6.8	2 U 1 U	4.1	1 U	10	1 U 1 U	16.8 4.2 B	255 16.9 J
S03M45 S03M45	04/02/2004 06/01/2004	GW	6.1	2 U	4.1	1 U	4.1 24	1 U	4.2 B 4.8 B	73.4
S03M45	08/12/2004	GW	22	7.6			64	3.1	10 U	57.9
S03M45	09/03/2004	GW	27	5.1 J			99	2.9 J	10 UL	111
S03M45	10/21/2004	GW	8.3	2 U			9.6	1.3	10 U	67
S03M45	04/20/2005	GW	25	5 U	24	5 U	24	5 U	2 UL	3.5 K
S03M45 S03M45	09/08/2005 06/23/2006	GW GW	3.3 J 2.3	5 U 2 U	4 J 2	5 U 1 U	4 J 2	5 U 1 U	2.1 U 3 U	23.1 13.8
S03M45 S03M45	05/11/2010	GW	2.3 13.3 K	1 UJ	20.4 K	1 UJ	2 20.4 K	1 UJ	3 U	13.8 5.6 U
S03M45	05/04/2011	GW	13.2 J	0.75 UJ	23.5 J	0.75 UJ	23.5 J	0.75 UJ	2 U	3.7 U
S03M45	6/11/2012	GW	0.69 J	0.75 U			0.48 J	0.75 U	1.5 J	2.8 J
S03M45	5/15/2013	GW	2.4	4.1			14.26 J	0.33 U		ampled
S03M45	5/30/2014	GW	2.1 J	0.75 UJ			8.8 J	0.75 UJ	1.7 J	3.7 U
S03M45 S03M45	5/13/2015	GW GW	1.1 0.64 J	0.75 U 0.75 U	0.49 1	0.75 U	0.64	0.75 U 0.75 U	1.4 J 2.3 J	3.5 J 5.5 J
S03M45 S03M45	5/17/2016 12/13/2017	GW	0.64 J 1 U	0.75 U 1 U	0.42 J 2.5	0.75 U 0.67 J	3.17	0.75 U 0.55 J	2.3 J 309	5.5 J 2130
S03M45	6/1/2018	GW	1	1 U	3.7	0.65 J	4.35	1 U	3.2	236
S03M45	5/16/2019	GW	0.92 J	1 U	2.9	1 U	2.9	1 U	2.5 J	9.7 J
S03M45	6/30/2020	GW	0.58 J	1 U	2.5	NS	NA	1 U	3.5	16.7
S03M46	08/11/2004	GW	120	6 U			1.7 J	3 U	10 U	8 B
S03M46	09/03/2004	GW	88	2 U			1.1	1 U	10 UL	4.7 B
0003440	10/21/2004	GW GW	71 67	10 U 5 U	1.5 J	5 U	5 U 1.5 J	5 U 5 U	10 U 2 B	11.9 B 3.1
S03M46 S03M46		σw			1.5 J 5 U	5 U	1.5 J 5 U	5 U	2.1 U	3.1 1.4 B
S03M46	04/21/2005 09/08/2005	GW	47			0.0	0.0	0.0	1 U	1.4 D
	09/08/2005 06/22/2006	GW GW	47 29	5 U 2 U	1 U	1 U	1 U	1 U	3 U	3 U
S03M46 S03M46	09/08/2005					1 U 1 U	1 U 0.83 J	1 U 1 U	3 U 6 U	3 U 1.6 J
S03M46 S03M46 S03M46 S03M46 S03M46	09/08/2005 06/22/2006 07/09/2008 05/21/2009	GW GW GW	29 28.5 32.6	2 U 1 U 1 U	1 U 0.83 J 0.6 J	1 U 1 U	0.83 J 0.6 J	1 U 1 U	6 U 3 U	1.6 J 5.7 U
S03M46 S03M46 S03M46 S03M46	09/08/2005 06/22/2006 07/09/2008	GW GW	29 28.5	2 U 1 U	1 U 0.83 J	1 U	0.83 J	1 U	6 U	1.6 J

Well ID	Date Sampled	Matrix	TCE	VC	CDCE	TDCE	Total DCE	CLBZ	AS	MN
	MCL or PRO		5	2	70	100		100	10	314
S03M46 S03M46	5/9/2013 5/29/2014	GW GW	9.1	0.33 U 0.75 U			0.37 0.75 U	0.33 U 0.75 U	Not Sa 2 U	mpled 2.6 J
S03M46 S03M46	5/13/2015	GW	6.2	0.75 U			4	0.75 U	2 U	8.1
S03M46	5/17/2016	GW	4.3	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	2 U	5.4 J
S03M46	12/13/2017	GW	3.3	1 U	1 U	1 U	1 U	1 U	1 U	15 U
S03M46	5/31/2018	GW	2.1	1 U	1 U	1 U	1 U	1 U	3 U	15 U
S03M46 S03M46	5/14/2019 6/30/2020	GW GW	3 1.8	1 U 1 U	1 U 1 U	1 U NS	1 U NA	1 U 1 U	3 U 3 U	15 U 1.4 J
S03M48	06/21/2006	GW	78	0.22 J	83	7	90	2.2	3 U	941
S03M48	07/08/2008	GW	37.7	1 U	40.2	4.8	45	1 U	6 U	947
S03M48	05/19/2009	GW	28.5	1 U	88.7	4.1	92.8	1 U	3 U	730
S03M48 S03M48	05/12/2010 05/04/2011	GW GW	16.3 166	1 U 2.3	18.3 108	4.7	19.9 112.7	1 U 0.75 U	3 U 2 U	370 790
S03M48	6/6/2012	GW	14.6	0.75 U	100	1.1	17.4	0.75 U	2 U	320
S03M48	5/8/2013	GW	26.5	0.49 J			22.8	1.4	Not Sa	ımpled
S03M48	6/2/2014	GW	20	0.75 U			17.4 J	0.75 U	9.3	240
S03M48 S03M48	5/18/2015 5/11/2016	GW GW	1.3 3.7	0.75 U 0.61 J	64.5	5.6	40.2 70.1	0.75 U 0.75 U	6.9 5.3	1500 1200
S03M48	12/6/2017	GW	1.2	0.81	3.3	2.2	5.5	0.73 U	11.5	696
S03M48	5/24/2018	GW	0.88 J	7	9.9	4.1	14	1.6	3 U	662
S03M48	5/8/2019	GW	0.73 J	6.9	10.6	4.4	15	0.97 J	1.6 J	605
S03M48	6/25/2020	GW	0.97 J	1 U	3.1	NS	NA 01	1 U	3	242
S03M49 S03M49	09/23/2004 11/10/2004	GW GW	500	1.4 J 300 U			91 3000	1.1 J 150 U	10 U 3.8 B	417 3260
S03M49	06/21/2006	GW	79	0.43 J	190	1.6	191.6	0.53 J	3 U	61
S03M49	07/08/2008	GW	156	0.95 J	1570	16.3	1586.3	0.26 J	6 U	164
S03M49	05/19/2009	GW	22	1 U	154	1.4	155.4	1 U	3 U	33
S03M49 S03M49	05/12/2010 05/02/2011	GW GW	29.4 J	2.6 J	499 J	4.9 J 5.4	503.9	2.5 J	3 U 2 U	18 770
S03M49 S03M49	6/6/2012	GW	27.1 38.9	3.8 U 0.75 U	430	0.4	435.4 317.4	3.8 U 0.75 U	2 U	770 15
S03M49	5/7/2013	GW	11	0.33 U			208.1	0.33 U	Not Sa	
S03M49	6/2/2014	GW	7.2	0.75 U		-	162.3	0.75 U	2 U	15
S03M49	5/20/2015	GW	51.9	0.73 J	1,000	50 C	1733	0.41 J	2 U 2 U	38
S03M49 S03M49	5/10/2016 12/6/2017	GW GW	60.7 5.4	3.8 U 115	1690 111	70.6	1760.6 115.3	3.8 U 1 U	4.2	37 1010
S03M49	5/24/2018	GW	2.8	115	93.7	3.2	96.9	1 U	3 U	684
S03M49	5/9/2019	GW	1.6	26.4	52.6	1.4	54	1 U	1.3 J	217
S03M49	6/25/2020	GW	1.1	1 U	15.9	NS	NA	1 U	9.7	274
S03M50 S03M50	08/12/2004 04/19/2005	GW GW	46000 760	4000 U	3800	42 J	16000 3842	2000 U 100 U	3.6 B 2 UL	16.5 B 895
S03M50 S03M50	09/07/2005	GW	2900	150 1200	15000	180 J	15180	500 U	2.1 U	660
S03M50	06/21/2006	GW	150	1800	4400	49 J	4449	50 U	3 U	526
S03M50	07/09/2008	GW	151	2220	5080	108	5188	2.7	6 U	765
S03M50	05/21/2009	GW	118	645	4010	96.2	4106.2	2.4	3 U	710
S03M50	05/12/2010	GW GW	50.1	1160	10100 J 25500	192 613	10292	5.5 J	3 U	840
S03M50 S03M50	05/03/2011 6/6/2012	GW	1.2 5.4	2340 547	25500	619	26113 11840	12.5 5.9	1.9 J 2 U	480
S03M50	5/8/2013	GW	1.2	637			36804	21.3		ımpled
S03M50	6/2/2014	GW	375 U	3100			66130	375 U	3.8	43
S03M50	5/21/2015	GW	9	2660	20200	1000	71370	103	3.4	22
S03M50 S03M50	5/10/2016 12/6/2017	GW GW	3.8 U 1 U	2390 5.3	63600 2.5	1090	64690 15.8	128 188	4 1 U	34 405
S03M50	5/25/2018	GW	10 U	782	2240	54.6	2294.6	148	3 U	153
S03M50	5/8/2019	GW	25 U	4830	7300	188	7488	143	1.4 J	69.4
S03M50	6/25/2020	GW	25 U	2570	7280	NS	NA	89.2	2.6 J	127
S03M51 S03M51	05/13/2010 05/04/2011	GW GW	2.7	1.1 0.75 U	5.5 1.7	1 U 0.75 U	5.5 1.7	1 U 0.75 U	3 U 2 U	140 38
S03M51	6/6/2012	GW	4.8	1.8	1.7	0.75 0	6.9	0.75 U		mpled
S03M51	5/7/2013	GW	2.7	0.33 U			3.35 J	0.33 U	Not Sa	ımpled
S03M51	5/29/2014	GW	1.9	0.75 U			1	0.75 U	2 U	49
S03M51	5/21/2015	GW	1.8	0.75 U	2.0	0.75 11	1.1	0.75 U	1.5 J	150
S03M51 S03M51	5/19/2016 12/7/2017	GW GW	4.9	0.75 U 1 U	3.6 8.8	0.75 U 1 U	3.6 8.8	0.35 J 1 U	2 U 1 U	90 69.1
S03M51	5/25/2018	GW	3.2	1 U	4.3	1 U	4.3	1 U	3 U	41.1
S03M51	5/16/2019	GW	1.8	1 U	3.2	1 U	3.2	1 U	3 U	36.8
S03M51	6/25/2020	GW	1.3	1 U	2.4	NS	NA 1 II	1 U	3	302
S03M52 S03M52	05/14/2010 05/02/2011	GW GW	1 U 0.69 J	1 U 0.75 U	1 U 0.74 J	1 U 0.75 U	1 U 0.74 J	1 U 0.75 U	3 U 2 U	820 370
S03M52	6/6/2012	GW	25 U	0.75 U			2.2	0.75 U	1.7 J	260
S03M52	5/15/2013	GW	0.33 UJ	0.33 UJ			0.33 U	0.33 UJ	Not Sa	ampled
S03M52	5/27/2014	GW	0.75 U	0.75 U			0.75 U	0.75 U	6.7	4500
S03M52 S03M52	5/14/2015 5/11/2016	GW GW	0.75 U 0.78 J	0.75 U 0.75 U	0.75 U	0.75 U	0.75 U 0.75 U	0.75 U 0.75 U	2 U 1.4 J	280 770
S03M52 S03M52	12/5/2017	GW	0.78 J 1 U	0.75 U	0.75 U	1 U	0.75 U 1 U	0.75 U 1 U	1.4 J 1.1	388
S03M52	5/21/2018	GW	1 U	1 U	1 U	1 U	1 U	1 U	3 U	156
S03M52	5/7/2019	GW	1 U	1 U	1 U	1 U	1 U	1 U	3 U	288
D03W13Z	6/25/2020	GW	1 U	1 U	1 U	NS	NA	1 U	3 U	93.3
S03M52	00/46/22 - :		150	110			150 47	5 U 1 U	10 U 10 U	785 1760
S03M52 S03M54	08/13/2004 09/22/2004	GW GW		11			-11	1 0	10 0	2520
S03M52	08/13/2004 09/22/2004 11/10/2004	GW GW	9.9 6.9	11 15			59	2 U	10 U	2020
S03M52 S03M54 S03M54	09/22/2004	GW	9.9		47	6	59 53	2 U 5 U	10 U 2.6 B	2020
S03M52 S03M54 S03M54 S03M54 S03M54 S03M54	09/22/2004 11/10/2004 04/20/2005 09/07/2005	GW GW GW	9.9 6.9 9.4 34	15 45 220	280	36	53 316	5 U 7.4 J	2.6 B 2.1 U	2020 2150
S03M52 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54	09/22/2004 11/10/2004 04/20/2005 09/07/2005 06/22/2006	GW GW GW GW	9.9 6.9 9.4 34 82	15 45 220 220	280 470	36 43	53 316 513	5 U 7.4 J 12	2.6 B 2.1 U 3.5 K	2020 2150 1580
S03M52 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54	09/22/2004 11/10/2004 04/20/2005 09/07/2005 06/22/2006 07/08/2008	GW GW GW GW GW	9.9 6.9 9.4 34 82 55.4	15 45 220 220 121	280 470 573	36 43 35.4	53 316 513 608.4	5 U 7.4 J 12 5.5	2.6 B 2.1 U 3.5 K 1.8 J	2020 2150 1580 1140
S03M52 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54	09/22/2004 11/10/2004 04/20/2005 09/07/2005 06/22/2006	GW GW GW GW	9.9 6.9 9.4 34 82	15 45 220 220	280 470	36 43	53 316 513	5 U 7.4 J 12	2.6 B 2.1 U 3.5 K	2020 2150 1580
S03M52 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54	09/22/2004 11/10/2004 04/20/2005 09/07/2005 06/22/2006 07/08/2008	GW GW GW GW GW GW GW GW	9.9 6.9 9.4 34 82 55.4 1.8	15 45 220 220 121 53.1	280 470 573 163	36 43 35.4 16	53 316 513 608.4 179	5 U 7.4 J 12 5.5 4	2.6 B 2.1 U 3.5 K 1.8 J 3.4	2020 2150 1580 1140 1600
S03M52 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54	09/22/2004 11/10/2004 04/20/2005 09/07/2005 06/22/2006 07/08/2008 05/21/2009 05/13/2010 05/04/2011 6/6/2012	GW GW GW GW GW GW GW GW GW	9.9 6.9 9.4 34 82 55.4 1.8	15 45 220 220 121 53.1 22	280 470 573 163 41.8	36 43 35.4 16 7	53 316 513 608.4 179 48.8 64.3	5 U 7.4 J 12 5.5 4 5.1 J	2.6 B 2.1 U 3.5 K 1.8 J 3.4 3 U	2020 2150 1580 1140 1600 1700
S03M52 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54	09/22/2004 11/10/2004 04/20/2005 09/07/2005 06/22/2006 07/08/2008 05/21/2009 05/13/2010 05/04/2011 6/6/2012 5/8/2013	GW GW GW GW GW GW GW GW GW GW GW	9.9 6.9 9.4 34 82 55.4 1.8 1.2 0.49 J 1.1	15 45 220 220 121 53.1 22 28.9 15.7 1.8	280 470 573 163 41.8	36 43 35.4 16 7	53 316 513 608.4 179 48.8 64.3 47.2	5 U 7.4 J 12 5.5 4 5.1 J 1.9 2.3 1.8	2.6 B 2.1 U 3.5 K 1.8 J 3.4 3 U 1.6 J 1.5 J Not Sa	2020 2150 1580 1140 1600 1700 1300 990 umpled
S03M52 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54	09/22/2004 11/10/2004 04/20/2005 09/07/2005 06/22/2006 07/08/2008 05/21/2009 05/13/2010 05/04/2011 6/6/2012 5/8/2013 5/29/2014	GW GW GW GW GW GW GW GW GW GW GW GW GW	9.9 6.9 9.4 34 82 55.4 1.8 1.2 0.49 J 1.1 0.41 J 0.75 U	15 45 220 220 121 53.1 22 28.9 15.7 1.8	280 470 573 163 41.8	36 43 35.4 16 7	53 316 513 608.4 179 48.8 64.3 47.2 18.1	5 U 7.4 J 12 5.5 4 5.1 J 1.9 2.3 1.8 1.2	2.6 B 2.1 U 3.5 K 1.8 J 3.4 3 U 1.6 J Not Sa 1.5 J	2020 2150 1580 1140 1600 1700 1300 990 umpled
S03M52 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54	09/22/2004 11/10/2004 04/20/2005 09/07/2005 06/22/2006 07/08/2008 05/21/2009 05/13/2010 05/04/2011 6/6/2012 5/8/2013	GW GW GW GW GW GW GW GW GW GW GW	9.9 6.9 9.4 34 82 55.4 1.8 1.2 0.49 J 1.1	15 45 220 220 121 53.1 22 28.9 15.7 1.8	280 470 573 163 41.8	36 43 35.4 16 7	53 316 513 608.4 179 48.8 64.3 47.2	5 U 7.4 J 12 5.5 4 5.1 J 1.9 2.3 1.8	2.6 B 2.1 U 3.5 K 1.8 J 3.4 3 U 1.6 J 1.5 J Not Sa	2020 2150 1580 1140 1600 1700 1300 990 umpled
S03M52 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54	09/22/2004 11/10/2004 04/20/2005 09/07/2005 06/22/2006 07/08/2008 05/21/2009 05/13/2010 05/04/2011 6/6/2012 5/8/2013 5/29/2014 5/18/2015	GW GW GW GW GW GW GW GW GW GW GW GW	9.9 6.9 9.4 34 82 55.4 1.8 1.2 0.49 J 1.1 0.41 J 0.75 U	15 45 220 220 121 53.1 22 28.9 15.7 1.8 14.6 9.3	280 470 573 163 41.8 57.4	36 43 35.4 16 7 6.9 J	53 316 513 608.4 179 48.8 64.3 47.2 18.1 18	5 U 7.4 J 12 5.5 4 5.1 J 1.9 2.3 1.8 1.2 1.2	2.6 B 2.1 U 3.5 K 1.8 J 3.4 3 U 1.6 J 1.5 J Not Se 1.5 J 1.6 J	2020 2150 1580 1140 1600 1700 1300 990 umpled 1100 1400
S03M52 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54 S03M54	09/22/2004 11/10/2004 04/20/2005 09/07/2005 06/22/2006 07/08/2008 05/21/2009 05/13/2010 05/04/2011 6/6/2012 5/8/2013 5/29/2014 5/18/2015 5/11/2016	GW GW GW GW GW GW GW GW GW GW GW GW GW G	9.9 6.9 9.4 34 82 55.4 1.8 1.2 0.49 J 1.1 0.41 J 0.75 U 0.41 J 0.63 J	15 45 220 220 121 53.1 22 28.9 15.7 1.8 14.6 9.3 5.7	280 470 573 163 41.8 57.4	36 43 35.4 16 7 6.9 J	53 316 513 608.4 179 48.8 64.3 47.2 18.1 18 18.2 8.4	5 U 7.4 J 12 5.5 4 5.1 J 1.9 2.3 1.8 1.2 1.2 0.89 J	2.6 B 2.1 U 3.5 K 1.8 J 3.4 3 U 1.6 J 1.5 J Not Se 1.5 J 1.6 J 1.6 J	2020 2150 1580 1140 1600 1700 1300 990 ampled 1100 1400

Well ID	Date Sampled	Matrix	TCE	VC	CDCE	TDCE	Total DCE	CLBZ	AS	MN
S03M57	MCL or PRO 05/13/2010	GW (μg /L)	5 1 UJ	2 1.9 J	70 3.1 J	100 0.61 J	3.71	100 6120 J	10 3.9	314 230
S03M57	05/05/2011	GW	0.75 UJ	1.5 J	2.2 J	0.81 J	3.18	4630	3.3	310
S03M57	6/11/2012	GW	0.75 UL	1.5			2.07	0.75 UL	2.8 J	230
S03M57	5/9/2013	GW	0.33 U	1.3			2.96 J	8760 J	Not Sa	ımpled
S03M57	5/28/2014	GW	7.5 U	7.5 U			7.5 U	3880 J	1.7 J	210
S03M57	5/15/2015	GW	0.75 U	0.71 J	0.0	0 21 1	1.29	2710	1.1 J	240
S03M57 S03M57	5/12/2016 12/11/2017	GW GW	0.75 U 5 U	1.3 5 U	6.2 5 U	0.51 J 5 U	6.71 5 U	2400 907	2 U 1 U	220 200
S03M57	5/23/2018	GW	5 U	5 U	5 U	5 U	5 U	2020	4.1	141
S03M57	5/7/2019	GW	1 U	1 U	0.52 J	1 U	0.52 J	625	1.4 J	123
S03M57	6/23/2020	GW	5 U	5 U	5 U	NS	NA	1150	0.96 J	153
S03M61D	07/14/2008	GW	1 U	1 U	1 U	1 U	1 U	1 U	6 U	24.8
S03M61D	05/22/2009	GW	1 U	1 U	1 U	1 U	1 U	1 U	4	18
S03M61S S03M61S	07/14/2008 05/21/2009	GW GW	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	6 U 1.6 J	7.1
S03M61S	05/12/2010	GW	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	3 U	5.6 U
S03M61S	05/03/2011	GW	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	2 U	3.7 U
S03M61S	6/7/2012	GW	0.75 U	0.75 U			0.75 U	0.75 U	2 U	3.7 U
S03M61S	5/13/2013	GW	0.33 UJ	0.33 UJ			0.33 U	0.33 UJ	Not Sa	mpled
S03M61S	5/22/2014	GW	0.75 U	0.75 U			0.75 U	0.75 U	2 U	2.1 J
S03M61S	5/12/2015	GW	0.75 U	0.75 U	0.0	1 11	0.75 U	0.75 U	2 U	4.6 J
S03M61S S03M61S	07/14/2008 5/16/2016	GW GW	2.8 0.75 U	1 U 0.75 U	2.8 0.75 U	1 U 0.75 U	2.8 0.75 U	1 U 0.75 U	6 U	179 4.2 J
S03M61S S03M61S	NS	NS	0.75 U NS	0.75 U NS	0.75 U NS	0.75 U NS	0.75 U NS	0.75 U NS	NS	NS NS
S03M61S	5/31/2018	GW	1 U	1 U	1 U	1 U	1 U	1 U	3 U	15 U
S03M61S	5/14/2019	GW	1 U	1 U	1 U	1 U	1 U	1 U	3 U	15 U
S03M61S	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
S03M62D	05/21/2009	GW	1.7	1 U	1.9	1 U	1.9	1 U	6.4	78
S03M62S	07/15/2008	GW	8.6	1 U	2.6	1 U	2.6	1 U	6 U	5.5 J
S03M62S	05/21/2009	GW	5.8	1 U	1.3	1 U	1.3	1 U	3 U	2 J
S03M62S	05/12/2010	GW	7.8	1 U	1.1	1 U	1.1	1 U	3 U	5.6 U
S03M62S S03M62S	05/03/2011 6/7/2012	GW GW	10.1 8.7	0.75 U 0.75 U	1	0.75 U	1.1	0.8 J 0.75 U	2 U 2 U	3.7 U 4.6 J
S03M62S S03M62S	5/15/2013	GW	8.7 0.5 J	0.75 U 0.33 U			0.33 U	0.75 U 0.33 U	Not Sa	
S03M62S	5/22/2014	GW	0.83 J	0.75 U			0.75 U	0.75 U	2 U	3.7 U
S03M62S	5/12/2015	GW	0.76 J	0.75 U			0.75 U	0.75 U	2 U	1.9 J
S03M62S	5/16/2016	GW	0.95 J	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	2 U	2.5 J
S03M62S	12/13/2017	GW	0.75 J	1 U	1 U	1 U	1 U	1 U	1 U	15 U
S03M62S	5/29/2018	GW	0.61 J	1 U	1 U	1 U	1 U	1 U	3 U	15 U
S03M62S	5/15/2019	GW	$0.53~\mathrm{J}$	1 U	1 U	1 U	1 U	1 U	3 U	15 U
S03M62S	6/29/2020	GW	1 U	1 U	1 U	NS	NA	1 U	3 U	15 U
S03M63D1	08/16/2010	GW	400 J	22.8 J	183 J	3 J	186	5.4 J		
S03M63D1	05/05/2011	GW	162 J	15.9 J	66.9 J	1.4 J	68.3	1.2 J	2 U	3.7 U
S03M63D1 S03M63D1	6/7/2012 5/14/2013	GW GW	109 J 67.9 J	9.2 J 6.5 J			42.3 J 24.2 J	0.71 J 0.33 UJ	2 U	3.7 U impled
S03M63D1	6/2/2014	GW	46.7	3.9			15.4 J	0.33 Us 0.37 J	2 U	3.7 U
S03M63D1	5/21/2015	GW	24.5	2.8			8.4	0.75 U	2 U	3.7 U
S03M63D1	5/12/2016	GW	20.2	1.8	6.9	0.45 J	7.35	0.75 U	2 U	3.7 U
S03M63D1	12/11/2017	GW	18	1.7	4.9	1 U	4.9	1 U	1 U	15 U
S03M63D1	5/31/2018	GW	11.8	1.4	4.3	1 U	4.3	1 U	3 U	15 U
S03M63D1	5/13/2019	GW	12.3	1.5	4.2	1 U	4.2	1 U	3 U	2 J
S03M63D1	6/26/2020	GW	13.3	1.1	3.6	NS	NA 040	1 U	3 U	2 J
S03M63D2 S03M63D2	03/21/2011 04/05/2011	GW GW	1500 D 970 D	29	230 D 170 D	3.7	243 173.7	0.97 J 0.53 J		
S03M63D2	05/02/2011	GW	609 L	28.8 L	182 L	3.2 L	185.2 L	0.49 J	1.6 J	3.9 J
S03M63D2	6/7/2012	GW	395	13.5			127.3	0.75 U		
S03M63D2	5/14/2013	GW	373 J	12.8 J			94.4 J	0.33 UJ	Not Sa	mpled
S03M63D2	6/2/2014	GW	271	8.2 J			82.2	0.75 U	11	28
S03M63D2	5/20/2015	GW	261	9.2			79.2	0.75 U	6.9	3 J
S03M63D2	5/12/2016	GW	237	10.2	78.2	2.7	80.9	0.35 J	7.4	2.6 J
S03M63D2 S03M63D2	12/12/2017 5/31/2018	GW GW	89.9 75	5.5 5.4	25.3 25.7	1.6	26.9 27.3	1 U 1 U	1.6 3 U	15 U 15 U
S03M63D2 S03M63D2	5/31/2018	GW	62.5	6.3	24.6	1.6	26	1 U	1.7 J	15 U
S03M63D2	6/26/2020	GW	72.6	5.1	22.7	NS	NA	1 U	1.8 J	15 U
S03M63D3	04/05/2011	GW	1200 D	31	210 D	4.5	214.5	0.89 J		
S03M63D3	05/03/2011	GW	714	30.7	156	4.3	160.3	0.71 J	1.6 J	64
S03M63D3	6/7/2012	GW	366	14.7			131.8	0.75 U	7.2	19
S03M63D3	5/10/2013	GW	313	11.3			80.8 J	1.7 U	Not Sa	_
S03M63D3 S03M63D3	6/2/2014 5/20/2015	GW GW	304 198	9.8			83.9 J 65.8	3.8 U 3.8 U	11	58 8.7
S03M63D3 S03M63D3	5/20/2015	GW	198	8.9	62.5	1.3	63.8	0.75 U	17	11
S03M63D3	12/15/2017	GW	114	7.4	49.7	2.9	52.6	1 U	2.6	15 U
S03M63D3	5/31/2018	GW	138	6.8	46.9	3.2	50.1	1 U	3 U	15 U
S03M63D3	5/9/2019	GW	87.4	6.5	36.3	2.8	39.1	1 U	8.3	187
S03M63D3	6/25/2020	GW	92.2	6	34.9	NS	NA	1 U	2.8 J	15.2
S03M64D1	08/16/2010	GW	119	91.5	296	21	317	1670	40	
S03M64D1 S03M64D1	05/05/2011 6/8/2012	GW GW	57.2 J 59.2	75.5 J 57.3	137 J	10.2 J	147.2 J 115.8	1100 1090	3.8	6 4 J
S03M64D1 S03M64D1	5/7/2013	GW	59.2 36	55.4			79.7	789 J	3.8 Not Sa	
S03M64D1	5/28/2014	GW	30.3 J	57.4			69.8	813	46	1.9 J
S03M64D1	5/18/2015	GW	17.3	46			59.7	517	42	3 J
S03M64D1	5/19/2016	GW	33.9	53.5	50.3	9.8 J	60.1	1550	39	3.7 U
S03M64D1	12/14/2017	GW	14.1	16.6	21.9	7.2	29.1	780	16.4	15 U
S03M64D1	5/25/2018	GW	10.2	23.6	19	5.4	24.4	458	15.3	15 U
S03M64D1	5/8/2019	GW	8.4	21.4	14.9	5	19.9	513	12.5	15 U
S03M64D1	6/24/2020 08/16/2010	GW	7.5	16.2	11.3	NS 23.I	NA 117.3	561	8.8	15 U
S03M64D2 S03M64D2	08/16/2010 05/03/2011	GW GW	38.8 J 20.2 J	25.7 J 24.1 J	115 J 59.3 J	2.3 J 1.9 J	117.3 61.2 J	1140 J 717 J	47	3.7 U
S03M64D2 S03M64D2	6/11/2012	GW	14.2	13.9	55.5 d	1.3 0	46.7	436	53	3.7 U
S03M64D2	5/7/2013	GW	11.8	14.1			36.1	361	Not Sa	
S03M64D2	5/28/2014	GW	7.5	10.2			29.5	241	57	3.7 U
		CW	9.1	13.7			29.6	285	60	28
S03M64D2	5/19/2015	GW	J.1	10.1						20

Well ID	Date Sampled	Matrix	TCE	VC	CDCE	TDCE	Total DCE	CLBZ	AS	MN
CoolforDo	MCL or PRO		5	2	70	100		100	10	314
S03M64D2 S03M64D2	12/14/2017 5/29/2018	GW GW	8.8 5.3	10.5 9.3	18.7 14.8	2.6	21.3 16.7	149 83.6	27.2	15 U 15 U
S03M64D2	5/14/2019	GW	4.6	8.2	14.4	2.1	16.5	79.9	28.9	15 U
S03M64D2	6/26/2020	GW	1.7 J	3 J	7.9 J	NS	NA	30.3 J	28.8	15 U
S03M64D3	03/22/2011	GW	96	9.2	27	1.3	28.3	5.2		
S03M64D3	04/05/2011	GW	650 D	20	110 D	2.6	112.6	0.56 J		
S03M64D3 S03M64D3	05/04/2011 6/8/2012	GW GW	32.1 278	6.3 13.9	14.2	0.71 J	14.91 79.2	0.75 U 3.8 U	3.2 2 U	550 3.7 U
S03M64D3	5/7/2013	GW	55.8	13.8			27.29 J	0.33 U	Not Sa	
S03M64D3	6/3/2014	GW	97.7 J	15.2 J			41 J	0.55 J	32	690
S03M64D3	5/18/2015	GW	158	22.8			49.4	1.1	10	67
S03M64D3	5/18/2016	GW	160	53.5	143	3.9	146.9	2.1	4.2	3.1 J
S03M64D3	12/2017					Not Samp				
S03M64D3	5/2018					Not Samp				
S03M64D3 S03M64D3	5/2019 6/2020					Not Samp Not Samp				
S03M65D	08/16/2010	GW	0.9 J	1 U	1 U	1 U	1 U	1 U		
S03M65D	05/05/2011	GW	0.84 J	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	4.1	3.7 U
S03M65D	6/12/2012	GW	0.6 J	0.75 U			0.75 U	5.8	3.8	3.7 U
S03M65D	5/9/2013	GW	0.42 J	0.33 U			0.49	1.8	Not Sa	mpled
S03M65D	6/3/2014	GW	3.8 U	3.8 U			3.8 UJ	3.8 U	16	120
S03M65D	5/18/2015	GW	0.75 U	0.75 U	0.75 11	0.55 11	75 U	0.75 U	20	120
S03M65D S03M65D	5/19/2016 12/12/2017	GW GW	0.75 U 0.32 J	0.75 U 1 U	0.75 U 1 U	0.75 U 1 U	0.75 U 1 U	0.75 U 1 U	13	3.7 U 15 U
S03M65D	5/23/2018	GW	1 U	1 U	1 U	1 U	1 U	1 U	12.8	15 U
S03M65D	5/10/2019	GW	1 U	1 U	1 U	1 U	1 U	1 U	11.5	15 U
S03M65D	6/26/2020	GW	1 UJ	1 UJ	1 UJ	NS	NA	1 UJ	17.3	15 U
S03M66D1	08/16/2010	GW	45.7	1 U	1.1	1 U	1.1	2.6 J		
S03M66D1	05/05/2011	GW	11	0.75 U	0.34 J	0.75 U	0.34 J	0.58 J	18	3.7 U
S03M66D1	6/8/2012	GW	6.1	0.75 U			0.75 U	0.75 U	20 Not So	3.7 U
S03M66D1 S03M66D1	5/9/2013 5/29/2014	GW GW	0.51 J 2.2	0.33 U 0.75 U			0.33 U 0.75 U	0.33 U 0.75 U	Not Sa 29	mpled 3.7 U
S03M66D1	5/29/2014	GW	1.2	0.75 U 0.75 U			0.75 U	0.75 U 0.75 U	33	2.9 J
S03M66D1	5/17/2016	GW	1.6	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	30	2 J
S03M66D1	12/14/2017	GW	1.2	1 U	1 U	1 U	1 U	1 U	29.5	15 U
S03M66D1	5/31/2018	GW	0.83 J	1 U	1 U	1 U	1 U	1 U	29	15 U
S03M66D1	5/14/2019	GW	0.9 J	1 U	1 U	1 U	1 U	1 U	31.2	15 U
S03M66D1	6/30/2020	GW GW	0.98 J	1 U	1 U	NS	NA 1.5	1 U	32.6	15 U
S03M66D2 S03M66D2	08/16/2010 05/04/2011	GW	57.1 20.3	1 U 0.75 U	1.5 0.69 J	1 U 0.75 U	1.5 0.69 J	4.3 1.5	18	1.9 J
S03M66D2	6/8/2012	GW	25.2	0.75 UL	0.00 0	0.10 0	0.99 L	1.1	22	3.7 U
S03M66D2	5/9/2013	GW	4.6	0.33 U			1.3	0.33 U	Not Sa	
S03M66D2	5/29/2014	GW	14.7	0.75 U			0.69 J	0.55 J	27	3.7 U
S03M66D2	5/13/2015	GW	11.2	0.75 U			0.55	0.75 U	29	3.7 U
S03M66D2	5/17/2016	GW	11.4	0.75 U	0.72 J	0.75 U	0.72 J	0.38 J	29	2.5 J
S03M66D2 S03M66D2	12/14/2017 5/31/2018	GW GW	8.2 5.7	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	26.5 25.6	15 U 15 U
S03M66D2 S03M66D2	5/14/2019	GW	5.7	1 U	1 U	1 U	1 U	1 U	26.6	15 U
S03M66D2	6/30/2020	GW	6.3	1 U	1 U	NS	NA	1 U	26.9	15 U
S03M67D1	03/14/2011	GW	12	0.5 U	1.7	0.5 U	1.7	0.5 U		
S03M67D1	04/04/2011	GW	9.6	0.5 U	1.3	0.5 U	1.3	0.5 U		
S03M67D1	05/05/2011	GW	8	0.75 U	1.1	0.75 U	1.1	0.75 U	2 U	23
S03M67D1 S03M67D1	6/7/2012 5/13/2013	GW GW	6.9 4.4 J	0.75 U 0.33 UJ			1.6 0.33 U	0.75 U 0.33 UJ	2 Not Sa	16 mpled
S03M67D1	5/22/2014	GW	0.75 U	0.55 UJ 0.75 U			1.5	0.35 UJ 0.75 U	2 U	21
S03M67D1	5/14/2015	GW	0.7 J	0.75 U			1.2	0.75 U	2 U	24
S03M67D1	5/16/2016	GW	0.75 U	0.75 U	2.2	0.75 U	2.2	0.75 U	2 U	21
S03M67D1	12/13/2017	GW	0.37 J	1 U	1.1	1 U	1.1	1 U	1.2	31
S03M67D1	5/30/2018	GW	1 U	1 U	1.1	1 U	1.1	1 U	3 U	19.4
S03M67D1	5/16/2019	GW	1 U	1 U	0.98 J	1 U	0.98 J	1 U	0.94 J	19.6
S03M67D1 S03M67D2	7/1/2020 3/11/2011	GW GW	1 U 15	1 U 0.5 U	0.58 J 3.2	NS 0.5 U	NA 3.2	1 U 0.5 U	1.2 J	17.9
S03M67D2	03/11/2011	GW	17	0.5 U	2.6	0.5 U	2.6	0.5 U		
S03M67D2	04/04/2011	GW	14	0.5 U	1.9	0.5 U	1.9	0.5 U		
S03M67D2	05/04/2011	GW	8.3	0.75 U	1.7	0.75 U	1.7	0.75 U	2 U	15
S03M67D2	6/7/2012	GW	11.5	0.75 U			2.6	0.75 U	2 U	6
S03M67D2 S03M67D2	5/13/2013 5/22/2014	GW GW	0.33 U 0.75 U	0.33 U 0.75 U			8.6 7.1	0.33 U 0.75 U	Not Sa 2 U	mpled 19
S03M67D2 S03M67D2	5/14/2015	GW	0.75 U 0.81 J	0.75 U			4.2	0.75 U	2 U	29
S03M67D2	5/16/2016	GW	0.75 U	0.51 J	7.2	0.75 U	7.2	0.75 U	2 U	23
S03M67D2	12/13/2017	GW	1.6	1 U	2.6	1 U	2.6	1 U	1 U	23.4
S03M67D2	5/29/2018	GW	1.4	1 U	1.8	1 U	1.8	1 U	3 U	15 U
or		GW	0.89 J	1 U	0.87 J	1 U	0.87 J	1 U	3 U	6.2 J
S03M67D2	5/16/2019		4.0			NS		1 U	3 U	6.1 J
S03M67D2	7/1/2020	GW	1.2	1 U 0.5 U	1.1 0.5 U	0.5 II	0.5 U			
			1.2 1.7 0.51 J	1 U 0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U		
S03M67D2 S03M68D1	7/1/2020 03/15/2011	GW GW	1.7	0.5 U	0.5 U		0.5 U	0.5 U		
S03M67D2 S03M68D1 S03M68D1	7/1/2020 03/15/2011 03/16/2011	GW GW	1.7 0.51 J	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	2 U	17
S03M67D2 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1	7/1/2020 03/15/2011 03/16/2011 04/04/2011 05/05/2011 6/7/2012	GW GW GW GW GW	1.7 0.51 J 0.99 J 0.73 J 0.75 U	0.5 U 0.5 U 0.5 U 0.75 U 0.75 U	0.5 U 0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.53 J 0.33 J	0.5 U 0.5 U 0.5 U 0.75 U 0.75 U		17
S03M67D2 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1	7/1/2020 03/15/2011 03/16/2011 04/04/2011 05/05/2011 6/7/2012 5/14/2013	GW GW GW GW GW	1.7 0.51 J 0.99 J 0.73 J 0.75 U 0.33 UJ	0.5 U 0.5 U 0.5 U 0.75 U 0.75 U 0.33 UJ	0.5 U 0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.53 J 0.33 J 0.33 U	0.5 U 0.5 U 0.5 U 0.75 U 0.75 U 0.33 UJ	Not Sa	17
S03M67D2 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1	7/1/2020 03/15/2011 03/16/2011 04/04/2011 05/05/2011 6/7/2012 5/14/2013 5/23/2014	GW GW GW GW GW GW	1.7 0.51 J 0.99 J 0.73 J 0.75 U 0.33 UJ 0.75 U	0.5 U 0.5 U 0.5 U 0.75 U 0.75 U 0.33 UJ 0.75 U	0.5 U 0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.53 J 0.33 J 0.33 U 0.75 U	0.5 U 0.5 U 0.5 U 0.75 U 0.75 U 0.33 UJ 0.75 U	Not Sa 2 U	17 mpled 3.9 J
S03M67D2 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1	7/1/2020 03/15/2011 03/16/2011 04/04/2011 05/05/2011 6/7/2012 5/14/2013	GW GW GW GW GW	1.7 0.51 J 0.99 J 0.73 J 0.75 U 0.33 UJ	0.5 U 0.5 U 0.5 U 0.75 U 0.75 U 0.33 UJ	0.5 U 0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.53 J 0.33 J 0.33 U	0.5 U 0.5 U 0.5 U 0.75 U 0.75 U 0.33 UJ	Not Sa	17
S03M67D2 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1	7/1/2020 03/15/2011 03/16/2011 04/04/2011 05/05/2011 6/7/2012 5/14/2013 5/23/2014 5/14/2015	GW GW GW GW GW GW GW GW	1.7 0.51 J 0.99 J 0.73 J 0.75 U 0.33 UJ 0.75 U 0.75 U	0.5 U 0.5 U 0.5 U 0.75 U 0.75 U 0.33 UJ 0.75 U 0.75 U	0.5 U 0.5 U 0.5 U 0.53 J	0.5 U 0.5 U 0.75 U	0.5 U 0.5 U 0.5 U 0.53 J 0.33 J 0.33 U 0.75 U	0.5 U 0.5 U 0.5 U 0.75 U 0.75 U 0.33 UJ 0.75 U 0.75 U	Not Sa 2 U 1.4 J	17 mpled 3.9 J 40
S03M67D2 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1	7/1/2020 03/15/2011 03/16/2011 04/04/2011 05/05/2011 6/7/2012 5/14/2013 5/23/2014 5/14/2015 5/18/2016	GW GW GW GW GW GW GW GW GW	1.7 0.51 J 0.99 J 0.73 J 0.75 U 0.33 UJ 0.75 U 0.75 U 0.75 U	0.5 U 0.5 U 0.5 U 0.75 U 0.75 U 0.33 UJ 0.75 U 0.75 U 0.75 U	0.5 U 0.5 U 0.5 U 0.53 J 0.75 U	0.5 U 0.5 U 0.75 U	0.5 U 0.5 U 0.5 U 0.53 J 0.33 J 0.33 U 0.75 U 0.75 U	0.5 U 0.5 U 0.5 U 0.75 U 0.75 U 0.33 UJ 0.75 U 0.75 U 0.75 U	Not Sa 2 U 1.4 J 2 U	17 mpled 3.9 J 40 9.3
S03M67D2 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1	7/1/2020 03/15/2011 03/16/2011 04/04/2011 05/05/2011 6/7/2012 5/14/2013 5/23/2014 5/14/2015 5/18/2016 12/14/2017 5/30/2018	GW GW GW GW GW GW GW GW GW GW GW GW	1.7 0.51 J 0.99 J 0.73 J 0.75 U 0.33 UJ 0.75 U 0.75 U 0.75 U 1 U 1 U 1 U	0.5 U 0.5 U 0.75 U 0.75 U 0.75 U 0.33 UJ 0.75 U 0.75 U 0.75 U	0.5 U 0.5 U 0.5 U 0.53 J 0.53 J	0.5 U 0.5 U 0.75 U 0.75 U 0.75 U 1 U 1 U	0.5 U 0.5 U 0.5 U 0.53 J 0.33 J 0.33 U 0.75 U 0.75 U 0.75 U 1 U 1 U	0.5 U 0.5 U 0.75 U 0.75 U 0.75 U 0.33 UJ 0.75 U 0.75 U 0.75 U 1 U 1 U	Not Sa 2 U 1.4 J 2 U 1 U	17 mpled 3.9 J 40 9.3 15 U
S03M67D2 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1	7/1/2020 03/15/2011 03/16/2011 04/04/2011 05/05/2011 6/7/2012 5/14/2013 5/23/2014 5/14/2015 5/18/2016 12/14/2017 5/30/2018 5/15/2019 6/30/2020	GW GW GW GW GW GW GW GW GW GW GW GW GW G	1.7 0.51 J 0.99 J 0.73 J 0.75 U 0.33 UJ 0.75 U 0.75 U 0.75 U 1 U 1 U 1 U	0.5 U 0.5 U 0.75 U 0.75 U 0.75 U 0.33 UJ 0.75 U 0.75 U 0.75 U 1 U 1 U 1 U 1 U	0.5 U 0.5 U 0.5 U 0.53 J 0.75 U 1 U 1 U 1 U	0.5 U 0.5 U 0.75 U 0.75 U 1 U 1 U 1 U NS	0.5 U 0.5 U 0.5 U 0.53 J 0.33 J 0.33 U 0.75 U 0.75 U 0.75 U 1 U 1 U NA	0.5 U 0.5 U 0.75 U 0.75 U 0.75 U 0.33 UJ 0.75 U 0.75 U 0.75 U 1 U 1 U 1 U	Not Sa 2 U 1.4 J 2 U 1 U 3 U	17 mpled 3.9 J 40 9.3 15 U 15 U
S03M67D2 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1	7/1/2020 03/15/2011 03/16/2011 04/04/2011 05/05/2011 6/7/2012 5/14/2013 5/23/2014 5/14/2015 5/18/2016 12/14/2017 5/30/2018 5/15/2019 6/30/2020 03/15/2011	GW GW GW GW GW GW GW GW GW GW GW GW GW G	1.7 0.51 J 0.99 J 0.73 J 0.75 U 0.33 UJ 0.75 U 0.75 U 0.75 U 1 U 1 U 1 U 1 U	0.5 U 0.5 U 0.75 U 0.75 U 0.75 U 0.33 UJ 0.75 U 0.75 U 0.75 U 0.75 U 1 U 1 U 1 U 1 U 0.5 U	0.5 U 0.5 U 0.5 U 0.53 J 0.75 U 1 U 1 U 1 U 1 U 0.62 J	0.5 U 0.5 U 0.75 U 0.75 U 1 U 1 U 1 U NS 0.5 U	0.5 U 0.5 U 0.5 U 0.53 J 0.33 J 0.33 U 0.75 U 0.75 U 1 U 1 U 1 U NA 0.62 J	0.5 U 0.5 U 0.75 U 0.75 U 0.75 U 0.33 UJ 0.75 U 0.75 U 0.75 U 1 U 1 U 1 U 0.5 U	Not Sa 2 U 1.4 J 2 U 1 U 3 U 3 U	17 mpled 3.9 J 40 9.3 15 U 15 U 2 J
S03M67D2 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D2 S03M68D2	7/1/2020 03/15/2011 03/16/2011 04/04/2011 05/05/2011 6/7/2012 5/14/2013 5/23/2014 5/14/2015 5/18/2016 12/14/2017 5/30/2018 5/15/2019 6/30/2020 03/15/2011 03/15/2011	GW GW GW GW GW GW GW GW GW GW GW GW GW G	1.7 0.51 J 0.99 J 0.73 J 0.75 U 0.33 UJ 0.75 U 0.75 U 0.75 U 1 U 1 U 1 U 2 0.5 U	0.5 U 0.5 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 1 U 1 U 1 U 0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.53 J 0.75 U 1 U 1 U 1 U 1 U 0.62 J 0.5 U	0.5 U 0.5 U 0.75 U 0.75 U 1 U 1 U 1 U NS 0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.53 J 0.33 J 0.33 U 0.75 U 0.75 U 1 U 1 U 1 U NA 0.62 J 0.5 U	0.5 U 0.5 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 1 U 1 U 1 U 0.5 U 0.5 U	Not Sa 2 U 1.4 J 2 U 1 U 3 U 3 U	17 mpled 3.9 J 40 9.3 15 U 15 U 2 J
\$03M67D2 \$03M68D1 \$03M68D1 \$03M68D1 \$03M68D1 \$03M68D1 \$03M68D1 \$03M68D1 \$03M68D1 \$03M68D1 \$03M68D1 \$03M68D1 \$03M68D1 \$03M68D1 \$03M68D1 \$03M68D1 \$03M68D1 \$03M68D1 \$03M68D2 \$03M68D2 \$03M68D2	7/1/2020 03/15/2011 03/16/2011 04/04/2011 05/05/2011 6/7/2012 5/14/2013 5/23/2014 5/14/2015 5/18/2016 12/14/2017 5/30/2018 5/15/2019 6/30/2020 03/15/2011 03/15/2011	GW GW GW GW GW GW GW GW GW GW GW GW GW G	1.7 0.51 J 0.99 J 0.73 J 0.75 U 0.33 UJ 0.75 U 0.75 U 1 U 1 U 1 U 1 U 2 0.5 U 0.5 U	0.5 U 0.5 U 0.75 U 0.75 U 0.75 U 0.33 UJ 0.75 U 0.75 U 0.75 U 1 U 1 U 1 U 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.53 J 0.75 U 1 U 1 U 1 U 1 U 0.62 J 0.5 U	0.5 U 0.5 U 0.75 U 0.75 U 1 U 1 U 1 U NS 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.5 U 0.53 J 0.33 J 0.33 U 0.75 U 0.75 U 1 U 1 U 1 U NA 0.62 J 0.5 U	0.5 U 0.5 U 0.5 U 0.75 U 0.75 U 0.33 UJ 0.75 U 0.75 U 0.75 U 0.75 U 1 U 1 U 1 U 1 U 0.5 U 0.5 U 0.5 U	Not Sa 2 U 1.4 J 2 U 1 U 3 U 3 U	17 mpled 3.9 J 40 9.3 15 U 15 U 2 J
S03M67D2 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D1 S03M68D2 S03M68D2	7/1/2020 03/15/2011 03/16/2011 04/04/2011 05/05/2011 6/7/2012 5/14/2013 5/23/2014 5/14/2015 5/18/2016 12/14/2017 5/30/2018 5/15/2019 6/30/2020 03/15/2011 03/15/2011	GW GW GW GW GW GW GW GW GW GW GW GW GW G	1.7 0.51 J 0.99 J 0.73 J 0.75 U 0.33 UJ 0.75 U 0.75 U 0.75 U 1 U 1 U 1 U 2 0.5 U	0.5 U 0.5 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 1 U 1 U 1 U 0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.53 J 0.75 U 1 U 1 U 1 U 1 U 0.62 J 0.5 U	0.5 U 0.5 U 0.75 U 0.75 U 1 U 1 U 1 U NS 0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.53 J 0.33 J 0.33 U 0.75 U 0.75 U 1 U 1 U 1 U NA 0.62 J 0.5 U	0.5 U 0.5 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 1 U 1 U 1 U 0.5 U 0.5 U	Not Sa 2 U 1.4 J 2 U 1 U 3 U 3 U	17 mpled 3.9 J 40 9.3 15 U 15 U 2 J
\$33M67D2 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D2 \$33M68D2 \$33M68D2 \$33M68D2 \$33M68D2 \$33M68D2 \$33M68D2 \$33M68D2	7/1/2020 03/15/2011 03/16/2011 04/04/2011 05/05/2011 6/7/2012 5/14/2013 5/23/2014 5/14/2015 5/18/2016 12/14/2017 5/30/2018 5/15/2019 6/30/2020 03/15/2011 03/16/2011 03/16/2011	GW GW GW GW GW GW GW GW GW GW GW GW GW G	1.7 0.51 J 0.99 J 0.73 J 0.75 U 0.33 UJ 0.75 U 0.75 U 1 U 1 U 1 U 1 U 2 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.75 U 0.75 U 0.75 U 0.33 UJ 0.75 U 0.75 U 0.75 U 1 U 1 U 1 U 0.5 U 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.53 J 0.75 U 1 U 1 U 1 U 1 U 0.62 J 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.75 U 0.75 U 1 U 1 U 1 U NS 0.5 U 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.5 U 0.53 J 0.33 J 0.33 U 0.75 U 0.75 U 1 U 1 U 1 U NA 0.62 J 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.75 U 0.75 U 0.33 UJ 0.75 U 0.75 U 0.75 U 1 U 1 U 1 U 1 U 0.5 U 0.5 U 0.5 U 0.5 U	Not Sa 2 U 1.4 J 2 U 1 U 3 U 3 U	17 mpled 3.9 J 40 9.3 15 U 15 U 2 J
\$33M67D2 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D1 \$33M68D2 \$33M68D2 \$33M68D2 \$33M68D2 \$33M68D2 \$33M68D2 \$33M68D2 \$33M68D2 \$33M68D2 \$33M68D2	7/1/2020 03/15/2011 03/16/2011 04/04/2011 05/05/2011 6/7/2012 5/14/2013 5/23/2014 5/14/2015 5/18/2016 12/14/2017 5/30/2018 5/15/2019 6/30/2020 03/15/2011 03/16/2011 03/16/2011 04/05/2011	GW GW GW GW GW GW GW GW GW GW GW GW GW G	1.7 0.51 J 0.99 J 0.73 J 0.75 U 0.33 UJ 0.75 U 0.75 U 0.75 U 1 U 1 U 1 U 2 0.5 U 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 1 U 1 U 1 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.53 J 0.75 U 1 U 1 U 1 U 0.62 J 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.75 U 0.75 U 1 U 1 U 1 U NS 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.5 U 0.53 J 0.33 J 0.33 U 0.75 U 0.75 U 1 U 1 U NA 0.62 J 0.5 U 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.75 U 0.75 U 0.33 UJ 0.75 U 0.75 U 0.75 U 0.75 U 1 U 1 U 1 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	Not Sa 2 U 1.4 J 2 U 1 U 3 U 3 U 3 U	17 mpled 3.9 J 40 9.3 15 U 2 J 15 U

Well ID	Date Sampled	Matrix	TCE	VC	CDCE	TDCE	Total DCE	CLBZ	AS	MN
	MCL or PRO	G (ua /L)	5	2	70	100		100	10	314
S03M68D2	5/14/2015	GW	0.75 U	0.75 U			0.75 U	0.75 U	4.3	110
S03M68D2	5/18/2016	GW	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	3.1	98
S03M68D2	12/15/2017	GW	1 U	1 U	1 U	1 U	1 U	1 U	6	88.7
S03M68D2	5/30/2018	GW	1 U	1 U	1 U	1 U	1 U	1 U	3 U	26.2
S03M68D2	5/15/2019	GW	1 U	1 U	1 U	1 U	1 U	1 U	4.4	76.4
S03M68D2 S03M69D1	6/30/2020 04/05/2011	GW GW	1 U 0.5 U	1 U 0.5 U	1 U 0.5 U	NS 0.5 U	0.5 U	1 U 0.5 U	3.2	60.4
S03M69D1 S03M69D1	05/05/2011	GW	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	10
S03M69D1	6/11/2012	GW	0.75 U	0.75 U	0.10 0	0.10 0	0.75 U	0.38 J	2.1 J	11
S03M69D1	5/14/2013	GW	0.33 U	0.33 U			0.33 U	0.33 U	Not Sa	ampled
S03M69D1	5/23/2014	GW	0.75 U	0.75 U			0.75 U	0.75 U	2.1 J	8.1
S03M69D1	5/14/2015	GW	0.75 U	0.75 U			0.75 U	0.75 U	2.2 J	8.5
S03M69D1	5/19/2016	GW	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	2 U	7.3
S03M69D1 S03M69D1	12/15/2017 5/30/2018	GW GW	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	2 3 U	15.8 15 U
S03M69D1 S03M69D1	5/14/2019	GW	1 U	1 U	1 U	1 U	1 U	1 U	2.1 J	4.5 J
S03M69D1	6/30/2020	GW	1 U	1 U	1 U	NS	NA	1 U	1.9 J	4.4 J
S03M69D2	6/11/2012	GW	0.75 U	0.75 U			0.75 U	0.75 U	1.4 J	10
S03M69D2	5/14/2013	GW	7.7	0.33 U			0.33 U	0.33 U	Not Sa	ampled
S03M69D2	5/23/2014	GW	0.75 U	0.75 U			0.75 U	0.75 U	4	16
S03M69D2	5/21/2015	GW	0.75 U	0.75 U			0.75 U	0.75 U	6.2	12
S03M69D2 S03M69D2	5/19/2016 12/18/2017	GW GW	0.75 U 1 U	0.75 U 1 U	0.75 U 1 U	0.75 U 1 U	0.75 U 1 U	0.75 U 1 U	10 5	8.7 43.4
S03M69D2 S03M69D2	5/30/2018	GW	1 U	1 U	1 U	1 U	1 U	1 U	10.6	43.4 15 U
S03M69D2	5/14/2019	GW	1 U	1 U	1 U	1 U	1 U	1 U	9.7	4.5 J
S03M69D2	6/30/2020	GW	1 U	1 U	1 U	NS	NA	1 U	9.5	4.4 J
S03M70	6/11/2012	GW	58.5	1.2			22.39	0.75 U	3.1	3.6 J
S03M70	5/15/2013	GW	0.94 J	0.33 U			11.6	0.33 U		ampled
S03M70 S03M70	6/2/2014 5/18/2015	GW GW	1.4 3.1	1.6			147.8	0.75 U 0.75 U	8.2	58 9
S03M70 S03M70	5/18/2015 5/11/2016	GW	3.1	1.2	47.8	0.73 J	63.6 48.5 J	0.75 U 0.75 U	18	9
S03M70	12/6/2017	GW	1.0 U	51.1	47.4	4.7	52.1	1 U	20.4	48
S03M70	5/23/2018	GW	0.8 J	27.8	23.7	2.8	26.5	1 U	23.1	72.5
S03M70	5/10/2019	GW	1.0 U	37.6	6.4	3.1	9.5	1 U	22	101
S03M70	6/29/2020	GW	1.0 U	9.1	3.4	NS	NA	1 U	40.6	105
S03M71	6/11/2012	GW	5.5	14.7			10.36	0.75 U	2 U	3.7 U
S03M71	5/9/2013	GW	7.4	11.5			8.1	0.33 U		ampled
S03M71 S03M71	6/3/2014 5/19/2015	GW GW	6.9 4.6	9.5 8.3			8.3 J 7.1	0.75 U 0.75 U	9.7	5 J 5.4 J
S03M71	5/18/2016	GW	5.4	8.7	7	0.75 U	7.1	0.75 U	12	4.3 J
S03M71	12/18/2017	GW	4.9	7.8	6.1	1 U	6.1	1 U	13.5	15 U
S03M71	5/29/2018	GW	4.4	7.5	5.8	1 U	5.8	1 U	13.3	15 U
S03M71	5/14/2019	GW	3.1	5.4	3.5	1 U	3.5	1 U	3.5	6.5 J
S03M71	6/29/2020	GW	1.4 J	1.4	0.95 J	NS	NA	1 U	1.4 J	7.7 J
S03M72	6/11/2012	GW	3.4	0.5 L 3.8 U			5	677	2 U	3.7 U
S03M72 S03M72	6/3/2014 5/20/2015	GW GW	3.8 U 1.7	0.57 J			1.7 J 1.3	3.8 U 0.75 U	20	19 9.5
S03M72	5/19/2016	GW	1.7	0.64 J	1.2	0.75 U	1.2	0.75 U	13	2.2 J
S03M72	12/5/2017	GW	2.2	0.69 J	0.85 J	1 U	0.85 J	1 U	11	15 U
S03M72	5/23/2018	GW	1.7	1 U	$0.85~\mathrm{J}$	1 U	0.85 J	1 U	9.4	15 U
S03M72	5/14/2019	GW	1.4	1 U	0.75 J	1 U	0.75 J	1 U	10.7	1.5 J
S03M72	6/29/2020	GW	1.7 J	1 U	0.66 J	NS	NA	1 U	9.1	15 U
S03M73D1 S03M73D1	6/11/2012 5/14/2013	GW GW	37.8 1.4	55 1.4			92.2	6.3 2.9	1.7 J	55 ampled
S03M73D1 S03M73D1	5/30/2014	GW	1.4 1 J	84.6 J			177.9 J	4.4 J	2.1 J	240
S03M73D1	5/20/2015	GW	0.68 J	18.3			46.7	2.3	1.3 J	220
S03M73D1	5/11/2016	GW	37.4	34.8	70.5	2.2	72.7	2.4	1.5 J	190
S03M73D1	12/12/2017	GW	22.1	26.6	79.5	1.6	81.1	3.1	7.4	351
S03M73D1	5/29/2018	GW	1.9	21.3	54.7	1.5	56.2	2.9	6.7	376
S03M73D1 S03M73D1	5/13/2019 6/26/2020	GW GW	40.3 24.4 J	44.8 13.5 J	129 60.3 J	2.3 NS	131.3 NA	2.8 0.73 J	6.9 2.2 J	366 266
S03M73D1 S03M73D2	6/11/2012	GW	19.3	24.5	00.5 5	IND	40.6	4.6	2.2 J	85
S03M73D2	5/14/2013	GW	4	20.5			40.35 J	0.37 J		ampled
S03M73D2	5/30/2014	GW	0.75 UJ	0.75 UJ			1.61 J	2 J	2 U	81
S03M73D2	5/20/2015	GW	0.75 U	1.3			1.55	0.36 J	4.1	25
S03M73D2	5/11/2016	GW	0.75 U	1.1	0.83 J	0.37 J	1.2	0.75 U	3.9	27
S03M73D2 S03M73D2	12/12/2017 5/29/2018	GW GW	1 U 1 U	1 U 0.83 J	0.66 J 0.6 J	0.74 J 1 U	1.4 0.6 J	0.4 J 0.41 J	3.4	24.8 24.6
S03M73D2 S03M73D2	5/29/2018	GW	1.4	0.83 J 1.1	0.6 J 2.4	1 U	2.4	0.41 J 1 U	2.7 J	25.4
S03M73D2	6/26/2020	GW	1 U	1 U	1 U	NS	NA	1 U	3 U	97.9
S07M05	04/04/2002	GW	16	2 U			0.66 J	1 U	10 U	1.1 B
S07M05	07/15/2008	GW	2.1	1 U	0.73 J	1 U	0.73 J	1 U	6 U	1.3 J
S07M05	05/22/2009	GW	1.6	1 U	0.59 J	1 U	0.59 J	1 U	3 U	5.7 U
S07M05	05/13/2010	GW	1.9	1 U	1 U	1 U	1 U	1 U	3 U	3.8 J
SRS-01 SRS-01	04/08/2002 07/14/2008	GW GW	13 3.5	2 U 1 U	1.4	1 U	7.2	1 U 1 U	10 U 6 U	0.86 B 1.1 J
SRS-01 SRS-01	05/21/2009	GW	3.0	1 U	1.4	1 U	1.4	1 U	3 U	5.7 U
SRS-01	05/11/2010	GW	2.4 K	1 UJ	0.67 J	1 UJ	0.67 J	1 UJ	3 U	5.6 U
SRS-01	2/16/2018	GW	0.4 J	1 U	1 U	1 U	1 U	1 U	1 U	15 U
SSP-08	04/08/2002	GW	2.8	2 U	-		3.4	1 U	10 U	5.2 B
SSP-08	07/14/2008	GW	1.7	1 U	1.9	1 U	1.9	1 U	6 U	10.6
SSP-08	05/21/2009	GW	2.8	0.93 J	7.2	1 U	7.2	1 U	3 U	3.7 J
CCD OO	05/11/2010 2/16/2018	GW GW	2.6 K 0.68 J	1 UJ 1 U	3.4 K 2.7	1 UJ 1 U	3.4 K 2.7	1 UJ 1 U	3 U 1 U	11 15 U
SSP-08		σw	U.UO J	1 U						
SSP-08 SSP-08 TSR-SI		GW	0.99 J	1 U	1.2	1 U	1.2	1 U	3 U	5.7 U
SSP-08	05/21/2009 05/11/2010	GW GW	0.99 J 0.66 J	1 U 1 UJ	1.2 0.81 J	1 U 1 UJ	0.81 J	1 U 1 UJ	3 U	5.7 U 5.6 U
SSP-08 TSR-SI	05/21/2009									

 $\label{eq:mcl/Preliminary Remedial Goal} MCL/PRG = Maximum \ Contaminant \ Level/Preliminary \ Remedial \ Goal \ TCE = Trichloroethene \qquad VC = Vinyl \ Chloride$

CLBZ = Chlorobenzene AS = Arsenic

NA = Not Applicable

GW = Groundwater

J = Estimated Value $CDCE = cis-1, 2\text{-Dichloroethene} \qquad TDCE = trans-1, 2\text{-Dichloroethene}$ MN = Manganese

NS = Not Sampled

APPENDIX C Data Validation Reports

QA/QC REVIEW OF 8260 VOLATILES DATA

Site 3 - Naval Support Activity (NSA) - Mechanicsburg, PA SGS Sample Delivery Group No. JD8742 June 2020 – Groundwater Samples

<u>Data Completeness</u>: The data deliverables pertaining to 46 groundwater sample locations, 5 field duplicate samples, 2 equipment rinsate blank samples, and 5 trip blank samples were complete. The samples were analyzed in eight analytical batches for selected volatile organic compounds using EPA Method 8260C (GCMS).

<u>Chain of Custody</u>: The chain of custody documentation was complete; no qualifiers were applied.

Holding Times: The samples were analyzed within the required holding times; no qualifiers were applied.

GC/MS Instrument Performance Check: Bromofluorobenzene (BFB) was run at least every 12 hours of analysis and all BFB ion abundance criteria were within control limits. No qualifiers were applied.

<u>Initial Calibration</u>: Initial calibration standards were run at the specified sequence and frequency. The target compound had relative response factors (RRF) above the allowable minimum. The percent relative standard deviations (%RSD) of the RRFs were below the allowable maximum for the target compounds. No qualifiers were applied.

<u>Continuing Calibration Verification</u>: Continuing calibration standards were run at the specified sequence and frequency. The percent difference (%D) between the initial calibration RRF and the continuing calibration RRF were below the allowable maximum for the target compounds. No qualifiers were applied.

<u>Blanks</u>: *Method Blank* – The eight associated method blank samples reported the target compounds as not detected. *Equipment Blank* – The two equipment rinsate samples (EB-062420 and EB-063020) reported the target compounds as not detected. *Trip Blank* – The five trip blank samples reported the target compounds as not detected. *Qualifiers* - No qualifiers were applied.

<u>Surrogate (DMC) Recovery</u>: Recoveries of the deuterated monitoring compounds (i.e., surrogate compounds: dibromofluoromethane, 1,2-dichloroethane-d4, toluene-d8, and 4-bromofluorobenzene) were within control and advisory limits. No qualifiers were applied.

<u>Field Duplicates</u>: Five field duplicates were collected and analyzed in this SDG. Review of the data between three of the **samples** (S03M18-062420, S03M50-062520 and S03M64D1-062420) and their *duplicates* (S03M18-062420DUP, S03M50D-062520, and S03M64D1D-062420), indicates very good correlation for the detected

compounds. Review of the data between **samples** (S03M17-062420 and S03M41-062520) and their *duplicates* (S03M17D-062420 and S03M41D-062520), indicates fair correlation for the detected compounds, most likely due to the samples being analyzed at different dilution ratios (e.g., 10X versus 25X) in different analytical batches. No qualifiers were applied.

Matrix Spike/Matrix Spike Duplicates: For the three site-specific MS/MSD samples (S03M17, S03M50, and S03M64D1), the percent recoveries and relative percent differences were within control limits, with the exception of chlorobenzene in S03M17, and cis-1,2-dichloroethene and vinyl chloride in S03M50, most likely due to relatively high analyte concentration in the original samples relative to the spike amount. No qualifiers were applied. For the five non-site-specific MS/MSD samples, the percent recoveries and relative percent differences were within control limits, with the exception of 1,2,4-trimethylbenzene in one of the MS/MSD sample sets, most likely due to relatively high analyte concentration in the original samples relative to the spike amount. No qualifiers were applied.

<u>Laboratory Control Spike</u>: For seven of the eight LCS samples, the percent recoveries for the target compounds were within the control limits. For the other LCS sample, the percent recovery for the target compounds were within the control limits, with the exception of trichloroethene (marginally high recovery). Positive results for trichloroethene in the corresponding samples are considered estimates and flagged (J); qualification of non-detects is not necessary. Qualifiers were applied to S03M71 and S03M72.

<u>Internal Standard Area Summary</u>: All internal standard areas and retention times for fluorobenzene, chlorobenzene-d5, and 1,4-dichlorobenzene-d4 were within control limits. No qualifiers were added.

<u>Compound ID</u>: All positive-result compounds met RRT and ion spectra criteria. No qualifiers were applied.

Quantitation/Reporting Limits: Compounds that are qualitatively identified at concentrations below their respective CRQL (i.e., reporting limits) are reported with a (J) qualifier to indicate that they are quantitative estimates. The (J) qualifier is also used to indicate that the quantitation is an estimate due to discrepancies in meeting sample collection criteria (i.e., head-space in vial) although the analyses and instrument performance met quality control limits. As such, the (J) qualifier was applied S0M64D2, S03M65D, and S03M73D1.

Ten samples were analyzed for selected compounds at a 2.5X, 5X, 10X, 25X, or 50X dilution. The reporting limits for these compounds were adjusted accordingly.

<u>OVERALL ASSESSMENT:</u> The checked data were within acceptable quantitation and qualitation limits. Minor issues were identified and qualifiers added; no major issues, however, were encountered during the volatiles data validation effort.

QA/QC REVIEW OF PCB DATA

Site 3 - Naval Support Activity (NSA) - Mechanicsburg, PA SGS Sample Delivery Group No. JD8742 June 2020 – Groundwater Samples

<u>Data Completeness</u>: The data deliverables pertaining to 46 groundwater sample locations, 5 field duplicate samples, and 2 equipment rinsate blank sample were complete. The samples were analyzed in five analytical batches for Aroclor 1260 using EPA Method 8082A (GCLC).

<u>Chain of Custody</u>: The chain of custody documentation was complete; no qualifiers were applied.

<u>Holding Times</u>: The samples were extracted and analyzed within the required holding times; no qualifiers were applied.

<u>Initial Calibration</u>: A six-point initial calibration was performed at the specified sequence and frequency. The percent relative standard deviations (%RSD) were within control limits and retention time windows were established. No qualifiers were applied.

<u>Continuing Calibration</u>: Continuing calibration verification standards were run at the specified sequence and frequency. The relative percent difference (%D) and the retention times were within the control limits for the target compound. No qualifiers were applied.

<u>Blanks</u>: The five associated method blank samples reported the target compound as not detected. Instrument blanks were analyzed in the required sequence and frequency; the target compound was not detected. *Equipment Blank* — The equipment rinsate samples (EB-062420 and EB-063020) reported the target compound as not detected. *Qualifiers* - No qualifiers were applied.

System Monitoring (Surrogate Recovery): Decachlorobiphenyl (DCB) and tetrachloro-m-xylene (TCX) recoveries were within the control limits, with the exception of high recoveries of TCX in two samples (S03M16 and S03M67D2). Results for these two samples are considered estimates and flagged (J) for detects and (UJ) for non-detects. Qualifiers were applied.

<u>Field Duplicates</u>: Five field duplicates were collected and analyzed in this SDG. Review of the data between the samples (S03M17-062420, S03M18-062420, S03M41-062520, S03M50-062520 and S03M64D1-062420) and their *duplicates* (S03M17D-062420, S03M18-062420DUP, S03M41D-062520, S03M50D-062520, and S03M64D1D-062420), indicates good correlation for the detected compound. No qualifiers were applied.

Matrix Spike/Matrix Spike Duplicate: For two of the three site-specific MS/MSD samples (S03M50 and S03M64D1), the percent recoveries and relative percent differences were within control limits. For the other site-specific MS/MSD samples (S03M17), the percent recoveries were outside control limits, most likely due to relatively high analyte concentration in the original sample relative to the spike amount; although the relative percent difference was within control limits. No qualifiers were applied

<u>Laboratory Control Spike/Laboratory Control Spike Duplicate</u>: For the five LCS samples and three LCSD samples, the percent recovery and relative percent difference for the target compound were within the control limits. No qualifiers were applied.

<u>Compound Identification</u>: Dual column analysis was performed. The retention times and retention time windows were within acceptable limits. The percent difference (%D) of detected concentrations between the dual columns were below the control limit for the detected compound. No qualifiers were applied.

Quantitation/Reporting Limits: Compounds have been properly identified and compounds that are qualitatively identified at concentrations below their respective Contract Required Quantitation Limits (i.e., reporting limits) are reported with a (J) qualifier to indicate that they are quantitative estimates. The (J) qualifier is also used to indicate that the quantitation is an estimate due to discrepancies in meeting quality control criteria. As such, the (UJ) qualifier was applied to two samples (S03M16 and S03M67D2) for high surrogate recoveries (although instrument performance and method detection limits met quality control limits). The (UJ) qualifier indicates that the analyte was analyzed for, but was not detected and the associated detection limit is an estimated value.

<u>Overall Assessment:</u> The checked data were within acceptable quantitation and qualitation limits. Minor issues were identified and qualifiers added; no major issues, however, were encountered during the PCB data validation effort.

QA/QC REVIEW OF METALS DATA

Site 3 - Naval Support Activity (NSA) - Mechanicsburg, PA SGS Sample Delivery Group No. JD8742 June 2020 – Groundwater Samples

<u>Data Completeness</u>: The data deliverables pertaining to 46 groundwater sample locations, 5 field duplicate samples, and 2 equipment rinsate blank sample were complete. The samples were analyzed for total arsenic, iron, and manganese using EPA Methods 6010D (ICP-AES) and 6020B (ICP-MS). Nine selected samples were also analyzed for dissolved iron.

<u>Chain of Custody</u>: The chain of custody documentation was complete; no qualifiers were applied.

Holding Times: The samples were digested and analyzed within the required holding times. No qualifiers were applied.

<u>Initial and Continuing Calibration Verification</u>: The sequence and frequency of the ICV and CCV runs were met and their values were within control limits $(90 - 110 \, \text{WR})$ for the samples. No qualifiers were applied.

<u>CRQL Check Standard</u>: The quantitation check standards were run and their values were within control limits; no qualifiers were applied.

<u>Initial and Continuing Calibration Blanks</u>: The sequence and frequency of the initial calibration blank and the continuing calibration blanks were met. The ICB and CCB values were within control limits for the samples. No qualifiers were applied.

<u>Blanks</u>: *Method Blank* – The method blank samples reported the target compounds as not detected. *Equipment Blank* – The equipment rinsate samples (EB-062420 and EB-063020) reported the target compounds as not detected. *Qualifiers* – No qualifiers were applied.

<u>ICP Interference Check Sample:</u> ICSs were analyzed at the beginning and end of each run. All results were within control limits (± 20% of the mean value); no qualifiers were applied.

Field Duplicates: Five field duplicates were collected and analyzed in this SDG. Review of the data between the samples (S03M17-062420, S03M18-062420, S03M41-062520, S03M50-062520 and S03M64D1-062420) and their duplicates (S03M17D-062420, S03M18-062420DUP, S03M41D-062520, S03M50D-062520, and S03M64D1D-062420), indicates good correlation for the detected compounds. No qualifiers were applied.

<u>Matrix Spike/Matrix Spike Duplicate</u>: For the six site-specific MS/MSD samples (S03M17, S03M50, S03M64D1, S03M52, S03M72 and S03M68D1), the percent recoveries and the relative percent differences were within control limits. No qualifiers were applied

<u>Post-Digestion Spike</u>: Post-digestion spike analysis is not applicable if the sample concentration is >4X the spike added and/or the MS recoveries are within control limits. Thus, for the applicable compounds, percent recoveries were within control limits. No qualifiers were applied.

<u>Laboratory Control Sample:</u> The percent recoveries were within control limits (%REC between 80% to 120%) for the LCS samples; no qualifiers were applied.

<u>ICP Serial Dilution</u>: Serial dilution analysis is applicable when compounds are detected >50X the IDL. The %D of serial dilution for compounds detected >50X the IDL (iron) were within control limits. Serial dilution analyses are not applicable for arsenic and manganese. No qualifiers were applied.

Quantitation/Reporting Limits: Compounds that are qualitatively identified at concentrations below their respective Contract Required Quantitation Limits (i.e., reporting limits) are reported with a (J) qualifier to indicate that they are quantitative estimates. The groundwater samples were analyzed at a 2x dilution for arsenic. The arsenic reporting limits were adjusted accordingly.

<u>Overall Assessment:</u> The checked data were within acceptable quantitation and qualitation limits. No major issues were encountered during the data validation effort and no qualifiers were added to the metals analyses.

QA/QC REVIEW OF RSK-175 DISSOLVED GASES DATA

Site 3 - Naval Support Activity (NSA) - Mechanicsburg, PA SGS Sample Delivery Group No. JD8742 June 2020 – Groundwater Samples

<u>Data Completeness</u>: The data deliverables pertaining to 9 groundwater sample locations were complete. The samples were analyzed in three analytical batches for dissolved gases (methane, ethane, and ethene) using EPA Method RSK-175 (GC).

<u>Chain of Custody</u>: The chain of custody documentation was complete; no qualifiers were applied.

<u>Holding Times</u>: The samples were analyzed within the required holding times; no qualifiers were applied.

<u>Initial Calibration</u>: Initial calibration standards were run at the specified sequence and frequency. The percent relative standard deviations (%RSD) and retention times (RT) were within control limits for the target compounds. No qualifiers were applied.

<u>Continuing Calibration</u>: Continuing calibration standards were run at the specified sequence and frequency. The relative percent difference (%D) were below the control limit of 15% and the RT were within the control limits for the target compounds. No qualifiers were applied.

<u>Blanks</u>: *Method Blank* – The three method blank samples reported the target compounds as not detected. *Qualifiers* - No qualifiers were applied.

<u>Lab Control Spike Analyses:</u> The percent recoveries were within the control limits for the three LCS samples. No qualifiers were applied.

<u>Lab Duplicate Analyses</u>: The percent recoveries were within the control limits for the three laboratory duplicate samples. No qualifiers were applied.

<u>Compound ID</u>: All positive-result compounds met retention times and retention time windows were within acceptable limits. No qualifiers were applied.

Quantitation/Reporting Limits: Compounds that are qualitatively identified at concentrations below their respective reporting limits are reported with a (J) qualifier to indicate that they are quantitative estimates.

OVERALL ASSESSMENT: The checked data were within acceptable quantitation and qualitation limits. No major issues were encountered during the data validation effort and no qualifiers were added to the dissolved gases analyses.

QA/QC REVIEW OF GENERAL CHEMISTRY DATA

Site 3 - Naval Support Activity (NSA) - Mechanicsburg, PA SGS Sample Delivery Group No. JD8742 June 2020 – Groundwater Samples

<u>Data Completeness</u>: The data deliverables pertaining to 9 groundwater sample locations were complete. The samples were analyzed for alkalinity, chloride, ammonia, nitrate, nitrite, nitrogen (nitrate + nitrite), sulfate, sulfide, and total organic carbon (TOC).

<u>Chain of Custody</u>: The chain of custody documentation was complete. No qualifiers were applied.

<u>Holding Times</u>: The samples were prepared and analyzed within the required holding times. No qualifiers were applied.

<u>Calibration Verification</u>: For the applicable analyses, the instruments were calibrated daily and each time the instrument was set up. The frequency and values of the calibration blanks and continuing calibrations were met. No qualifiers were applied.

<u>Blanks</u>: The method blank samples reported the target analytes as not detected. No qualifiers were applied.

<u>Lab Control Spike Analysis</u>: The percent recoveries were within control limits for the LCS samples; no qualifiers were applied.

<u>Lab Duplicates</u>: The relative percent difference for the site-specific samples analyzed as laboratory duplicate samples were within control limits. No qualifiers were applied.

<u>Matrix Spike/Matrix Spike Duplicate</u>: For the MS/MSD analyses, the percent recoveries and relative percent differences were within control limits, with the exception of the TOC analyses, most likely due to relatively high analyte concentration in the original sample relative to the spike amount. No qualifiers were applied.

<u>Overall Assessment:</u> The checked data were within acceptable quantitation and qualitation limits. No major issues were identified during the data validation effort and no qualifiers were added to the general chemistry analyses.